Титан как нестандартный металл, используемый при производстве ювелирных украшений


В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2 Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением. Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Термообработка титановых сплавов

Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.

Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.

Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.

Химические свойства

Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С. Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Конструкционные высокопрочные ТС

Предел прочности σв > 1000 МПа марок ВТ6, ВТ14, ВТ3-1, ВТ22, ВТ23М. Отличаются удовлетворительной свариваемостью всеми видами сварки. Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах.

Кроме того, сферы применения всегда будут требовать повышения их эксплуатационных свойств за счет новых термических и термомеханических обработок. Среди наиболее перспективных можно назвать ВТ23М. Он сочетает в себе высокую прочность, трещиностойкость как основного материала, так и сварных соединений. Во многом превосходит зарубежные аналоги по свойствам и стоимости за счет уменьшенного содержания молибдена и ванадия, исключения олова и циркония. Из него изготавливают все виды прокатных, кованых, прессованных полуфабрикатов, а также монолитные, сварные и паяные конструкции.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия. Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами. Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Особенности производства

Производство титана является сложным, длительным и дорогостоящим процессом. Элемент образует химические соединения и твердые растворы со многими металлами, поэтому при создании требует особых условий.

Среди наиболее распространенного сырья для получения титана выделяют титано-магнетитовые руды, из которых получают ильменитовый концентрат. Процесс занимает несколько этапов:

  • получение титанового шлака восстановительной плавкой. В электродуговую печь загружают концентрат и восстановитель. Производят нагрев до 1650 градусов Цельсия. Из восстановленного и науглероживающегося железа образуется чугун, а оксид титана переходит в шлак, который содержит 82—90% TiO2;
  • получение тетрахлорида титана хлорированием. Проводят в шахтных хлораторах непрерывного действия или в солевых хлораторах. Газообразный хлор воздействует на TiO2 при температурах 700–900 °С;
  • производство титана (губки, порошка) восстановлением из тетрахлорида. Для этого используют магний или натрий.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Особенности маркировки

В соответствии с ГОСТ 19807-91 обозначаются буквами ВТ, ОТ, ПТ (В, О, П — идентификатор организации-разработчика или производителя, Т — титан) и цифрами, указывающими порядковый номер сплава в зависимости от химического состава.

В — ВИАМ титан — Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ, г. Москва);

О — Опытный титан — совместная разработка ВИАМ и Верхнесалдинского металлургического производственного объединения (ВСМПО, г. Верхняя Салда, Свердловская область);

П — Прометей титан — Центральный научно-исследовательский институт конструкционных материалов «Прометей» (г. Санкт-Петербург).

Кроме общего разделения, сплавам Ti присваиваются другие специальные обозначения. Они соответствуют составу и параметрам:

  • технические марки ВТ1-1, ВТ1-0, ВТ1-00 содержат титан от 99,3 до 99,9%;
  • титановые губки ТГ-90, ТГ-110, ТГ-150, ТГ-120, ТГ-Тв, ТГ-130, ТГ-100;
  • литейные — ВТ20Л, ВТ21Л, ВТ14Л, ВТ9Л, ВТ6Л, ВТ1Л, ВТ3-1Л, ВТ5Л.

В некоторых случаях после порядкового номера сплава ставится дополнительная буква:

У — улучшенный,

М — модифицированный,

И — специального назначения,

В — с преобладанием ванадия в качестве легирующего элемента.

Основные качества титановых украшений

Любители титановых украшений ценят этот металл за его несколько особых качеств:

  • Красивый внешний вид. Кольца из титана не менее красивы, чем из серебра и золота. Их делают и простые — только из металла, и с декором — с различными камнями (в том числе с бриллиантами), вставками, напылениями и так далее. Они могут быть глянцевыми и матовыми, а также различного цвета — синие, черные, фиолетовые и другие.
  • Относительно низкая цена. Кольца из титана дешевле, чем из золота. Сам металл стоит недорого, но для его обработки нужно иметь дорогое оборудование. Это образует большую часть цены изделий.
  • Прочность. Обручальные кольца из титана более устойчивы к физическим и химическим (например, от бытовой химии) воздействиям, чем золотые или серебряные. Фактор прочности здесь важен, ведь эти кольца люди обычно носят практически не снимая.
  • Гипоаллергенность. Титан не окисляется, не ржавеет, не вступает в реакцию ни с какими веществами, находясь на человеческом теле. Люди, у которых есть аллергия на серебро, золото и сплавы, могут позволить себе носить титановые украшения.
  • Легкость. Так как титан очень легкий металл, то даже крупные украшения из него обладают относительно маленьким весом.

Общая характеристика

Титановые сплавы обладают повышенной реакционной способностью с инструментальными сталями, в частности, с быстрорежущими. Для начала реакции достаточны температуры, превышающие 500 °C. В условиях повышенных температур происходит диффузия атомов титана в карбидный инструментальный материал и их последующая химическая реакция с углеродом, присутствующим в инструменте. В результате образуется промежуточного слоя из карбида титана (TiC), который прочно связывается с обеими поверхностями. Формирование насыщенной зоны схватывания сводит к минимуму механизм диффузионного износа.

Основными характеристиками, которые делают титан востребованным во многих сферах хозяйственной деятельности, являются:

  1. Превосходное соотношение прочности и веса, обеспечивающее экономию конструкций, которые используются в аэрокосмической и нефтехимической промышленности.
  2. Коррозионная стойкость, особенно востребованная в аэрокосмической, химической, нефтехимической и архитектурной отраслях.
  3. Биологическая совместимость, представляющая интерес для медицинской промышленности.

Композиции на основе титана имеют привлекательный внешний вид. Это свойство используется в монументально-прикладном искусстве.

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49,7—52,7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская .

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]