Области применения, основные характеристики и свойства титана и его сплавов


В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Производство и изготовление

Благодаря распространённости в природе добывать руду, содержащую титан, не сложно. Самые распространённые виды руды, в которых содержится этот металл — брукит, ильменит, анатаз и рутил. Однако дальнейшие способы обработки титана (плавка, закалка и старение) считаются дорогостоящими. Существует несколько этапов получения чистого металла из руды:

  1. В первую очередь добывается титановый шлак, с помощью разогревания ильменита до 1650 градусов.
  2. Далее шлак проходит процесс хлорирования.
  3. После этого с помощью печей сопротивления производится титановая губка.
  4. Для получения чистого металла заключительным этапом обработки является процесс рафинирования.

Если нужно получить слитки титана, губку на его основе переплавляют в вакуумной печи.

Магниетермический процесс

Магниетермическое восстановление — популярный метод получения металла. Проведение технологического процесса:

  1. Расплавляется оборотный магниевый конденсат.
  2. Сливается конденсат хлористого магния.
  3. При температуре 800 градусов, жидкий тетрахлорид титана с жидким магнием подаются в форму для застывания. Скорость подачи — 2,1–2,3 г/ч см2.

Постепенно температура снижается до 600 градусов.

Гидридно-кальциевый метод

Это промышленный метод восстановления металла. Процесс проведения работ:

  1. При температуре 500 градусов Цельсия металлический кальций насыщается водородом.
  2. Далее его смешивают с двуокисью титана. Компоненты нагревают в реторте, постепенно повышая температуру до 1100 градусов.
  3. Спекшиеся компоненты вымывают из реторты.
  4. Далее проводится обработка соляной кислотой.
  5. Титановый порошок сушат, запекают в индукционных печах при температуре около 1400 градусов.

На спекшуюся массу должно воздействовать давление 10в-3 мм.

Электролизный метод

Способ получения сплава, основанный на применении электрического тока. Напряжение воздействует на ТiO2, ТiСl4. До этого их растворяют с помощью расплавленных солей фторидов.

Йодидный метод

Способ получения металла после термической диссоциации TiJ4. Изначально его получают при реакции паров йода с металлическим титаном.

Чтобы получить сплав высокой чистоты, необходимо применять последний способ получения соединения. Три первых метода позволяют быстро получать технический титан.

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит (сфен) CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Достоинства и недостатки

Как и у любого другого металла, у титана есть сильные и слабые стороны. К преимуществам относятся:

  • малый вес;
  • коррозийная стойкость;
  • устойчивость к воздействию высоких температур;
  • высокая прочность — больше, чем у лучших образцов стали.

Недостатки:

  1. Пыль и стружка, остающаяся после обработки титановых заготовок, может воспламенится при температуре в 400 градусов.
  2. Этот металл плохо сваривается и практически не поддаётся резке.
  3. Затратный способ получения металла из руды обуславливает его высокую стоимость.

Однако, несмотря на имеющиеся минусы, материал и его сплавы широко распространены в различных отраслях производства.


Малый вес

Получение


Брусок кристаллического титана (чистота 99,995 %, вес ≈283 г, длина ≈14 см, диаметр ≈25 мм), изготовленный на иодидным методом ван Аркеля и де Бура
Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

TiO2 + 2C + 2Cl2 → TiCl4 + 2CO

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

TiCl4 + 2Mg → 2MgCl2 + Ti

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2CaO → 2Ca + O2

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

O2 + C → CO2 TiO2 + 2Ca → Ti + 2CaO

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан йодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Характеристики и свойства

Характеристики титана напрямую зависят от количества примесей, содержащихся в его составе. Физические параметры:

  1. Удельная прочность — 450 МПа.
  2. Температура плавления титана — 1668 градусов.
  3. Температура кипения — 3227 градусов.
  4. Предел прочности у сплавов — 2000 Мпа.
  5. Упругость титана — 110,25 Гпа.
  6. Твердость металла — 103 НВ.
  7. Предел текучести — 380 Мпа.

Структура и свойства этого металла обуславливают его низкую электропроводность. В нормальных условиях титан обладает высоким показателем устойчивости к коррозийным процессам.


Металл

Физические свойства металла

Титан представляет собой серебристо-белый металл. Он тугоплавкий, немного тяжелее алюминия. Однако при чуть большем весе прочность титана в три раза больше. Поддаётся различным способам обработки. Устойчив к воздействию влаги и кислот. Основные свойства титана были описаны выше.

Химические свойства титана

В нормальных условиях на поверхности этого металла образуется оксидная плёнка, которая защищает его от разрушительного воздействия влаги и кислот. К химическим свойствам титана можно отнести его устойчивость к воздействию щелочей, растворам хлора. Имеет степень окисления +4. С кислородом начинает взаимодействовать при температуре в 600 градусов. Титановая стружка может самовоспламеняться при нагревании.

Испытания

Тот факт, что титан не обладает высокой твердостью и режущими свойствами, не дает возможности более широко применять данный металл в хирургическом инструментарии. Поэтому придание титану режущих свойств и повышение его твердости являются задачами первостепенной важности. Главная сложность здесь заключается в том, что современные промышленные методы упрочнения, нельзя применять в отношении медицинских инструментов — здесь к ним предъявляют особые требования. Кроме того медицинские инструменты и аппараты работают в специфических условиях (контакт с йодом, физиологическим раствором, стерилизация путем кипячения).

Виды сплавов

Титановые сплавы можно разделить на три большие группы:

  1. Соединения на основе химических соединений. Представители этой группы имеют жаропрочную структуру и низкую плотность. Снижение плотности напрямую влияет на снижение веса материала. Такие сплавы используют при изготовлении деталей для автомобилей, каркасов для летательных аппаратов и корпусов для кораблей.
  2. Жаропрочные сплавы с низкой плотностью. Это аналог соединений с никелем, но с меньшей ценой. В зависимости от химического состава меняется устойчивость сплава титана к высоким температурам.
  3. Конструкционные — высокопрочные соединения, которые легко поддаются обработке благодаря высокому показателю пластичности. Из этих сплавов изготавливаются детали, которые устанавливаются в оборудовании, работающим с большими нагрузками.

При производстве титановых сплавов используется официальная маркировка, которая указывает на то, с какими металлами он соединён.

Аналоги марки ВТ1-0

Как уже было замечено ранее, маркировка с двумя буквами и цифровым обозначением является чисто Российской и не используется в других странах. Поэтому при покупке за рубежом важно знать, какие иностранные марки соответствуют отечественным.

  • В Соединенных Штатах Америки аналогом является Grade 2
  • В Германии — DIN 7034, DIN 3.7035, DIN Ti2
  • В Японии — JIS CI2
  • Во Франции — AFNOR T-40
  • В Англии -IMI125

Следует учитывать, что указанные аналоги могут отличаться по составу от отечественного титана и являются наиболее близкими к нему. Поэтому при покупке из за рубежа лучше всего найти компанию в России, которая имеет необходимые сертификаты соответствия на зарубежную продукцию.

Покупатели часто интересуются, можно ли заменить титан ВТ1-0 отечественного производства на тот, что произведен в Китае или в другой стране. Ответ: да, можно. В случае, если к иностранному металлопрокату есть сертификаты соответствия и анализы химического состава. Металлопрокат, изготовленный за рубежом, может полноценно заменить отечественный. Однако, если дело касается таких серьезных отраслей, как оборонная, то здесь замена не практикуется.

Свойства и применение титановых сплавов

Титановые сплавы лишены основных недостатков чистого металла. При добавлении сторонних материалов изменяются его характеристики. Ключевые свойства титановых сплавов:

  • устойчивость к коррозийным процессам;
  • малая плотность;
  • большая удельная прочность.

Также сплавы более устойчивы к воздействию высоких температур. Благодаря повышенной защите от воздействия кислот и щелочей сплавы на основе этого материала получили популярность в химической промышленности и медицине. Их используют в строительстве, изготовлении оборудования, машин, самолётов, ракет и кораблей.

Титан и соединения на его основе распространены в различных направлениях промышленности. Этот металл обладает уникальными характеристиками, которые выделяют его на фоне других материалов. Из-за сложностей получения чистого металла цена на него достаточно высока.

Хирургические инструменты

Сейчас в клинических учреждениях используется более 200 наименований различных хирургических инструментов. Их испытания прошли в Московском научно-исследовательском институте глазных болезней имени Гельмгольца, Институте хирургии имени А. Вишневского, Запорожском институте усовершенствования врачей, Клинике болезней уха, горла и носа Центрального института усовершенствования врачей. Все инструменты были отмечены положительными отзывами специалистов. Пластинчатые крючки, зеркала и рано-расширители, то есть инструменты с большой рабочей площадью, которые не испытывают больших рабочих нагрузок, выполнили с сечениями, уменьшенными на 30%, что в свою очередь снизило вес изделия на 50%.

Стоматология

При изготовлении зубных пластмассовых протезов для того, чтобы получить косметический эффект, в отечественной стоматологии используют белое кристаллическое вещество, являющееся двуокисью титана. Но для зубных протезов можно применять как соединения титана с кислородом, так и конструкционный титан — это биологически инертный, прочный, достаточно легкий и хорошо поддающийся обработке металл.

Скобы

Клиникой челюстно-лицевой хирургии под руководством доцента К. И. Татаринцева (Запорожье) был предложен новый метод лечения переломов нижней челюсти при помощи П-образных скоб из титана BT1−00. Разжимные ножки данных скобок обеспечивают надежное закрепление в правильном положении всех обломков челюсти. Этим методом в период с 1971 по 1973 год излечили около полусотни пациентов с одно- и двусторонними переломами нижней челюсти. Полученные результаты доказывают, что новая технология сокращает сроки заживления раны, тем самым трудоспособность возвращается значительно быстрее.

Обработка

Во Всесоюзном научно-исследовательском институте хирургической аппаратуры и инструментов, чтобы увеличить твердость металла, износостойкость и снизить коэффициент трения, проводились химико-термическая и термическая обработка (то есть альфирование и азотирование). При помощи анодирования на изделиях получили цветную пленку разных оттенков (лиловую, зеленую, фиолетовую, золотую). Все образцы подвергли стерилизации через автоклав при 180 °C. После каждого цикла изучали изменение цвета покрытия и появление пятен коррозии. Самой прочной и коррозионностойкой пленкой оказалась оксидная пленка золотистого, лилового и фиолетового цветов.

Поставщик

Вас интересует применение титана в медицине? Применение титана в медицине от поставщик «Ауремо» соответствует ГОСТ и международным стандартам качества, цена — оптимальная от поставщика. Предлагаем купить продукцию со специализированных складов с доставкой в любой город. Купить сегодня. Оптовым заказчикам цена — льготная.

Купить, выгодная цена

Применение титана в медицине от поставщик «Ауремо» предлагается сегодня по оптимальной цене. На складе представлен самый широкий выбор продукции. Всегда в наличии титан, цена — обусловлена технологическими особенностями производства без включения дополнительных затрат. Оптимальная цена от поставщика. Купить сегодня. Ждем ваших заказов. У нас наилучшее соотношение цена-качество на весь ряд продукции. На связи опытные менеджеры — оперативно помогут купить титан оптом или в рассрочку. Постоянные покупатели могут купить титановый прокат с дисконтной скидкой.

Наборы

Титановые медицинские инструменты легче изделий из стали на 20−30%, при этом они более удобны и долговечны, а также обладают лучшей коррозионной стойкостью. Сотрудники Всесоюзного научно-исследовательского института на основе полученных сведений разработали и изготовили опытные наборы инструментов из титановых сплавов для стоматологии, оториноларингологии и общей хирургии. В комплект для общей хирургии вошли кровоостанавливающие зажимы, пластинчатые пинцеты и двухсторонние крючки, V-образный проволочный крючок, скальпель со съемными лезвиями, печеночные зеркала и другие изделия — итого 27 наименований (масса всех инструментов — 1,59 килограмма). В ЛОР-комплект для оториноларингологических операций вошли трахеотомический расширитель с пружиной, ранорасширитель «Лира», ушной пинцет, трахеотомический крючок, ушные воронки и тампонные щипцы (общая масса — 235 грамма). Комплект стоматологических инструментов прошел все испытания в Центральном научно-исследовательском институте стоматологии.

Ортопедия

В настоящий момент переломы костей часто лечат при помощи металлического остеосинтеза. Для него используют стержни, которые и обеспечивают неподвижность осколков, способствуя процессу консолидации перелома. Но у многих пациентов в дальнейшем возникают различные осложнения, связанные с применением конструкций из нержавеющей стали. Неоднородность стали, как химическая, так и структурная, часто становится причиной разрушения фиксаторов, а это приводит к переломам всей конструкции. Костная ткань повреждается продуктами коррозии, наблюдаются явления электропроводности и ионизации. Ионы железа начинают взаимодействовать с физиологическими солями организма, что вызывает воспаление и острую боль. Поэтому даже самая высококачественная нержавеющая сталь не является лучшим материалом для остеосинтеза.

Костные фиксаторы

Использование для изготовления костных фиксаторов титана позволило избежать описанных выше осложнений благодаря биологической нейтральности данного металла. Таким образом, титановые конструкции можно использовать для длительного (или даже постоянного) нахождения в организме человека. Это особенно важно, если остеосинтез проводят пожилым людям, ведь использование титана способно избавить пациента от операции для удаления фиксатора.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]