Магнезиальные вяжущие вещества их свойства и применение


Химический состав

MgO 47.6%, СO2 52.4%. Из изоморфных примесей наиболее часто устанавливается Fe, иногда Mn, Са. Магний может частично замещаться железом, и магнезит, таким образом, постепенно переходит в сидерит. Крук выделил следующие промежуточные типы магнезита: брейнерит (breunnerite) 95 — 70% MgCO3, мезитит 70-50% MgCO3, пистомезитит 50-30% MgCO3, сидероплезит 30 — 5% MgCO3; остальное во всех случаях приходится на FeCO3. Механическими примесями, особенно в метаколлоидных образованиях, являются: SiO2 в виде опала или халцедона (до нескольких процентов), Аl2O3 в виде глинистого вещества, Н2O, иногда доломит (с ним, очевидно, связано содержание СаО в магнезитовых массах).

Кристаллографическая характеристика

Сингония. Тригональная

Класс дитригонально-скаленоэдрический. L33L23PC.

Кристаллическая структура


Магнезит Узбелский массив
Главные формы:

Кристаллическая структура аналогична структуре кальцита.

Физические свойства

Оптические

  • Цвет магнезита белый с желтоватым или сероватым оттенком, иногда снежно-белый.
  • Черта белая.
  • Блеск стеклянный, матовый.

Механические

  • Твердость 4—4.5 (у фарфоровидных разновидностей до 7).
  • Плотность 2.9—3.1.
  • Спайность совершенная по ромбоэдру.
  • Излом зернистый, для плотных метаколлоидных фарфоровидных разностей характерен раковистый излом.
  • Хрупок.


Магнезит Азналинское месторождение

Химические свойства

Растворимость MgCO3 в воде несколько выше, чем для кальцита. При обыкновенной температуре и атмосферном давлении в чистой воде она не превышает 80 мг/л, но в виде бикарбоната Mg[HCO3]2 растворимость исключительно высока: при РCO2,- равном 1 ат, и При 18° она достигает 25 800 мг/л, т. е. в 23 раза выше, чем растворимость при этих же условиях бикарбоната кальция. При РCO2 равном 56 ат, она возрастает до 74900 мг/л. Характерно, что при нагревании она столь же резко падает: при температуре 100° и том же РCO2 равном 1 ат, она меньше 100 мг/л.

Важно подчеркнуть также то обстоятельство, что из раствора бикарбоната магния при понижении РCO2 или повышении t не удается получить осадок нормальной соли MgCO3, а всегда тригидрат— MgCO3 • 3H2O, часто в смеси с основными водными карбонатами магния (вследствие явно выраженной склонности ионов Mg2+ к образованию комплексов с Н2O). С течением времени эти водные соли способны превращаться в безводный нормальный карбонат магния (в условиях пониженной упругости водяного пара). Установлено также, что выпадение тригидрата карбоната магния в осадок резко возрастает с увеличением щелочности раствора (при рН>8).

В кислотах растворяется лишь при нагревании. Капля соляной кислоты на холоду не «вскипает». Лишь в тонкозернистых агрегатах, как это характерно и для других труднее растворимых карбонатов (доломита, сидерита и пр.), пузырьки СO2 выделяются спустя некоторое время. В горячих кислотах растворяется.

Прочие свойства

Теплота образования: MgO+CO2 = MgCO3+27 240 кал.

Диссоциация MgCO3 при прокаливании в атмосфере воздуха наступает при температуре 525° (по кривым нагревания 600— 690°). При повышенных давлениях углекислоты РCO2 = 1—200 ат, магнезит может быть устойчив до температуры 600—700°.

Искусственное получение минерала

Искусственно магнезит получается при нагревании осажденных из растворов водных карбонатов магния. Интересно отметить, что при пропускании струи СО2 через нагретый раствор MgCO3 выпадают в осадок кристаллики ромбической модификации (неизвестные в природе).

Диагностические признаки магнезита

Сходные минералы. Доломит, кальцит.

Сопутствующие минералы. Доломит, кальцит, кварц, опал, тальк, оливин, пирит, халькопирит, лимонит, галенит, сфалерит.

Узнается с трудом. Белая массивная разновидность похожа на кремень, но обладает более низкой твердостью. В кристаллических разностях, как и все карбонаты кальцитового ряда, отличим от других минералов по ромбоэдрической спайности. Внутри ряда его труднее всего отличить от доломита, анкерита и других карбонатов; приходится прибегать к оптическим и химическим исследованиям. От доломита и кальцита отличается характером реакции с соляной кислотой.


Магнезит радиально-лучистые агрегаты с мелкими кристалликами кварца

Применнение в строительстве

Магнезиальные вяжущие вещества содержат каустический магнезит или каустический доломит. В молотом состоянии их затворяют не водой, с которой они затвердевают очень медленно, а раствором хлористого магния (MgCl2), сернокислого магния (MgSO4) или некоторых других солей.

Магнезиальные вяжущие вещества твердеют на воздухе, поэтому их можно применять только там, где сухо. Они отличаются тем, что прочно сцепляются с волокнистыми материалами, например с древесными, поэтому их используют в сочетании со стружками для производства теплоизоляционного материала — фибролита, и с опилками — для получения ксилолита . Сырьем для производства каустического магнезита служит горная порода магнезит, состоящая в основном из углекислого магния MgCO3. Чистый магнезит встречается гораздо реже известняка и гипса.

Производство каустического магнезита складывается из двух последовательных процессов обжига и помола.

Обжиг магнезита производится в шахтных, вращающихся и других печах. Цель обжига — удаление из магнезита углекислого газа. Опытами установлено, что каустический магнезит наилучшего качества (как вяжущее вещество) получается при температуре обжига 800—850°.

Помол каустического магнезита производится чаще всего в шаровых мельницах с воздушными сепараторами для отделения тонких частиц. Перевозят его в железных барабанах емкостью 150 кг или навалом в крытых вагонах, хранят в закрытых помещениях, не допуская увлажнения и загрязнения.

Каустический магнезит представляет собой тонкий порошок белого или желтоватого цвета.

Удельный вес его 3,1— 3,4 % т. е. больше, чем обыкновенного портландцемента.

Содержание окиси магния в нем должно быть не менее 83% для 2-го сорта и 75% для 3-го сорта.

Наиболее распространенным затворителем магнезиального цемента служит раствор хлористого магния MgCl2 6Н2О, который представляет собой бесцветную или слегка желтоватую прозрачную соль.

Происхождение и нахождение

Магнезит по сравнении с кальцитом в природе распространен значительно реже, но встречается иногда в больших сплошных массах, представляющих промышленный интерес. Часть таких скоплений образуется гидротермальным путем. Сюда прежде всего следует отнести весьма крупные месторождения кристаллических зернистых масс магнезита, пространственно связанных с доломитами и доломитизированными известняками. Как показывает геологическое изучение, эти залежи образуются метасоматическим путем (среди залежей иногда удавалось установить реликты известняковой фауны). Предполагают, что магнезия могла выщелачиваться и отлагаться в виде магнезита горячими щелочными растворами из доломитизированных толщ осадочного происхождения. В парагенезисе с магнезитом изредка встречаются типичные гидротермальные минералы: кальцит, арагонит, доломит, барит, тальк, хлорит, кварц, пирит, халькопирит, сфалерит, блеклые руды и др.

Другой тип гидротермальных месторождений, также имеющий иногда практическое значение, связан с воздействием богатых углекислотой гидротерм на массивы ультраосновных магнезиальных изверженных пород: серпентинитов, перидотитов и др. Залежи тонкокристаллического магнезита в виде линз, жил, гнезд и густой сети прожилков обычно приурочены к трещинам и зонам сбросов. В виде включений наблюдаются кальцит, доломит, анкерит, тальк, халцедон, кварц, магнетит, гематит и др. Образование магнезита могло происходить по следующей схеме:

Mg6[Si4O10][OH]8 + 6CO2 → MgCO3 + 4SiO2 + H2O

Образующийся при этом свободный кремнезем в основном, очевидно, уносится щелочными водами. Опал, халцедон и кварц в самой магнезиальной массе обычно наблюдаются в сравнительно ничтожных количествах.

Скопления скрытокристаллического («аморфного») магнезита возникают также при процессах выветривания массивов ультраосновных пород, особенно в тех случаях, когда при интенсивном выветривании образуется мощная кора продуктов разрушения. В процессе окисления и гидролиза магнезиальные силикаты под влиянием поверхностных вод и углекислоты воздуха претерпевают полное разрушение. Возникающие при этом труднорастворимые гидроокислы железа скопляются у поверхности. Магнезия в виде бикарбоната, а также освободившийся кремнезем в виде золей опускаются в нижние горизонты коры выветривания. При этом могут возникнуть нерезко очерченные, постепенно переходящие друг в друга зоны новообразований. Магнезит, часто обогащенный опалом и доломитом, в виде прожилков и скоплений натечных форм отлагается в сильно выщелоченных трещиноватых пористых серпентинитах в зоне застоя грунтовых вод.

Наконец, находки магнезита с гидромагнезитом большей частью минералогического значения наблюдаются среди осадочных соленосных отложений. Образование карбонатов магния связывают с реакцией обменного разложения сульфата магния с Na2CO3. Магнезит встречается также в гипсоносных осадочных толщах.


Магнезит. Зернистый агрегат

Существуют два способа производства хлористого магния:

  1. извлечение из сгущенной, в результате испарения, морской воды — из морских лиманов или соленых озер
  2. получение на химических заводах в виде отхода при производстве калийных удобрений.

Кроме хлористого магния в качестве затворителей можно применять растворы сернокислого магния, кислого сернокислого натрия, железного купороса, природного минерала. карналита, а также серной и соляной кислот. Однако наивысшую прочность имеет магнезиальное вяжущее вещество, затворенное на хлористом магнии, а несколько меньшую затворенное на карналите или сернокислом магнии. Сернокислый магний имеет то преимущество перед другими затворителями, что придает магнезиальному вяжущему меньшую-гигроскопичность.

При затворении каустического магнезита раствором хлористого магния или других, указанных выше, солей происходят схватывание и твердение, которые ускоряются при повышении температуры. Магнезиальное вяжущее применяется в строительстве главным образом в соединении с органическими заполнителями (с древесной стружкой и опилками), поскольку оно не вызывает разложения органических веществ и дает с ними хорошее сцепление.

Под действием воды это вяжущее разрушается, так как из него вымываются растворимые соли.

Магнезиальное вяжущее испытывают на сроки схватывания, равномерность изменения объема и прочность.

Методика испытаний та же, что и для обыкновенного цемента, но со следующими изменениями:

  • тесто нормальной густоты приготовляют из магнезита, затворенного раствором хлористого магния с удельным весом 1,20;
  • образцы хранят не в воде, а на воздухе при обычной комнатной температуре и влажности;
  • прочность испытывают только на растяжение, причем состав;
  • раствора входят магнезит и сосновые опилки в отношении 3: I (по весу).

Магнезиальное вяжущее характеризуется следующими свойствами:

  1. начало схватывания не ранее 20 мин., конец не позднее 6 час. от начала затворения;
  2. предел прочности при растяжении через сутки не ниже 15 кг/см2;
  3. магнезиальный раствор с сосновыми опилками состава 3 : 1 (по весу) пластичной консистенции через 28 дней обычно имеет прочность на сжатие от 200 до 300 кг/гм2, что соответствует прочности цементов высоких марок

Таким образом, магнезиальное вяжущее нормально схватывает, быстро твердеет на воздухе, обладает заметной прочностью уже через сутки и высокой прочностью через 28 дней.

Месторождения

Известное Саткинское месторождение кристаллического магнезита, гидротермального происхождения, находится на западном склоне Южного Урала (в 50 км к юго-западу от г. Златоуста). Крупные магнезитовые залежи образовались метасомэтическим путем среди доломитовой осадочной толщи докембрийского возраста. Аналогичные месторождения известны на Дальнем Востоке, в Южной Манчжурии, Корее, Австрии (Вейтш, в Альпах, южнее г. Вены), в Чехии, в Канаде (Квебекское) и в других местах.

Крупное месторождение магнезита гидротермального происхождения среди серпентинитовых массивов известно на о. Эвбее в Эгейском море. К месторождениям, образовавшимся в древней коре выветривания ультраосновных пород, относится Халиловское на Южном Урале.

Практическое применение

В металлургии «намертво» обожженный кристаллический магнезит употребляется для изготовления огнеупорных кирпичей, выдерживающих температуру до 3000°. Они идут в кладку нижних частей пода мартеновских печей, конверторов, цементных печей и др. Второй областью применения обожженного магнезита является изготовление так называемого цемента Сореля, используемого в абразивной промышленности (точильные круги) и в строительстве (стойкая штукатурка в смеси с песком, гравием, древесными опилками, диатомитом, тальком и другими наполнителями). Употребляется также для производства злектроизоляторов, в бумажном, сахарном, резиновом и других производствах.

Применение магнезиального цемента для штукатурного раствора

Вяжущим в штукатурках на магнезиальном цементе является каустический магнезит активностью 600—1000 кг/см2. Вместо каустического магнезита нормального обжига можно применять отходы от так называемого мертвого обжига магнезита.

Основное требование к каустическому магнезиту нормального обжига или в виде отходов — высокая тонкость помола. Чем тоньше помол, тем выше вяжущие свойства обожженного на каустик магнезита и его пластичность. В качестве затворителя могут быть применены хлор-магний или сернокислый магний. Последний дает несколько меньшую прочность, но одновременно и менее гигроскопичную штукатурку.

В качестве, заполнителя в магнезиальных штукатурках могут применяться все виды инертных материалов, применяемые в каменных и известково-песчаных штукатурках. Применяется также добавка микро­асбеста низших сортов. В целях повышения звуко- и теплоизоляционных свойств могут быть введены и органические заполнители в виде древесной муки и опилок. Красителями для магнезиального вяжущего служат те же минеральные пигменты, что и для окрашивания портландцемента, за исключением ультрамарина.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]