Как распознать высокое содержания минерала в руде: интерпретация результатов геологоразведки


Виды золоторудных месторождений

Золоторудные месторождения возникают преимущественно в районах развития гранитоидов

, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом
гидротермальных
, месторождениях. В экзогенных условиях видимое золото является очень устойчивым элементом и легко накапливается в
россыпях
.

Однако субмикроскопическое золото, входящее в состав сульфидов

, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с
гидроокислами железа
,
марганца
. Миграция золота в зоне окисления сульфидных месторождений происходит в виде
бромистого
и
йодистого
соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота
сульфатом окиси железа
или в виде суспензионной взвеси.

Различаются:

  1. первичные месторождения золота,
  2. россыпи, в которые оно попадает в результате разрушения рудных месторождений
  3. и месторождения с комплексными рудами, в которых золото извлекается в качестве попутного компонента.

Коренное золото и россыпи

Золотые руды и россыпи — природные минеральные образования, содержание и общее количество золота в которых достаточны для экономически выгодной добычи этого металла. Золото находится в рудах главным образом в самородном виде. Оно не является химически чистым, а представляет собой твёрдый раствор с др. металлами, преимущественно с серебром. Кроме того, золото в рудах присутствует в виде теллуридов (калаверит AuTe2 и др.), но они не имеют большого промышленного значения. Месторождения золота делятся на коренные и россыпные.

Коренные месторождения золота

Коренные месторождения представлены жилами, системами жил, залежами и зонами прожилково-вкрапленных руд различных размеров и форм. Рудные тела приурочены к трещинам, зонам дробления и рассланцевания горных пород. Мощность их от 0,05 до десятков м, длина десятки и тысячи м. Наиболее крупными зонами являются: жильная зона Колар в Индии (длина 20 км, разрабатываемая до глубины 3,2 км, при средней мощности жил 1,2 м), система жил Мазер-Лод в США (длина 200 км); некоторые жильные зоны Енисейского кряжа, минерализованные зоны месторождения Мурунтау в Средней Азии. Золотые месторождения известны в складчатых поясах, на платформах и в областях тектонической активизации.

Месторождения золотой руды формировались в разные геологические эпохи (от докембрийской до кайнозойской), на разных глубинах (от десятков метров до 4—5 км от земной поверхности), обычно в связи с крупными разломами земной коры, образуя т. н. золотоносные пояса. Их происхождение связано в основном с деятельностью гидротерм. Минеральный состав золотых руд разнообразен: преобладают кварц и сульфиды железа (пирит, марказит), реже — мышьяка (арсенопирит); присутствуют сульфиды и сульфосоли меди, свинца, цинка, висмута, сурьмы, серебра, окислы, карбонаты. По составу и условиям формирования выделяются следующие формации: 1) золото-сульфидно-кварцевые, представленные кварцевыми жилами и прожилками, содержащими от 0,5 до 30% сульфидов; золото мелкое и крупное (встречаются также самородки), распределено неравномерно, содержание его колеблется от 10—50 до 1000 г/т (СССР, Канада, США, Бразилия, Индия, Австралийский Союз, Гана, Южная Родезия); 2) существенно-сульфидные, представленные залежами, зонами прожилков и вкрапленной минерализации; золото тонкодисперсное, содержание его редко превышает 1—2 г/т, извлекается попутно с др. металлами — медью, цинком, свинцом, никелем (Танзания, Намибия, Канада, Мексика, Австралийский Союз).

Зоны окисления руд (железные шляпы) некоторых медно-колчеданных и полиметаллических месторождений обогащены переотложенным из коренных руд золотом и являются самостоятельными объектами добычи последнего. Большая часть таких месторождений находится в СССР (на Урале и в Казахстане).

Россыпи золота

Россыпи золота представляют собой золотоносные рыхлые (реже сцементированные) отложения обломочного материала, образованные в результате разрушения коренных месторождений и золотосодержащих горных пород. По условиям формирования выделяются следующие основные типы россыпей: элювиальные, делювиальные, аллювиальные, прибрежные, морские и озёрные. Наибольшую промышленную ценность представляют аллювиальные россыпи, в том числе современные русловые, долинные и террасовые, а также древние погребённые. Длина россыпей от 1-3 до 25 км, редко до 50 и 100 км, при ширине от 1 м до 200-300 м, иногда до 1 км и более; мощность 1-3м. Содержание золота — от десятых долей г/м3 до десятков кг/м3. Золотые россыпи образовывались в разные геологические эпохи. Древние россыпи нередко погребены под более молодыми осадками и залегают на глубине до 100—150 м от поверхности земли. Богатейшие золотоносные россыпи за рубежом известны — в Канаде (бассейн рек Юкон и Клондайк), США (Аляска, Калифорния), Колумбии, Австралийском Союзе, Новой Зеландии, Новой Гвинее, Филиппинах; в СССР (бассейны рек Енисея, Лены, Бодайбо, Витима, Алдана, Колымы, Яны и Индигирки).

Особый тип месторождений золота — метаморфизованные россыпи

(золотоносные конгломераты, реже гравелиты). К этому типу относится крупнейшее в мире месторождение золота Витватерсранд в ЮАР. (Источник — https://studbooks.net/2401163/matematika_himiya_fizika/korennye_mestorozhdeniya_zolota )

Коренные месторождения золота

Коренные месторождения, называемые так же эндогенными, — первоисточник золота, поднятые магмой слои изнутри земной коры в результате глубинных процессов. Руды образующие коренные месторождений золота отличаются разнообразием минерального состава.

К магматическому типу золотоносных месторождений относятся крупные медно — никелевые месторождения, в которых золото заключено преимущественно в сульфидах и извлекается попутно в процессе извлечения меди, никеля, платины и других металлов. Содержание золота в золотоносных месторождений магматического типа невелико, но благодаря своим крупным масштабам эти месторождения позволяют получить довольно много золота.

Кроме золотоносных месторождений магматического типа выделяю так же пегматитовые месторождения (золотоносные жилы внутри трещин скальных магматических пород) и скарновые месторождения (присутствие золота на границе контакта пород гранита и доломита). Но эти золотоносные месторождения практически не являются источниками получения золота, как из-за малого их количества, так и по причине слишком малой концентрации золота в образующих породах.

Виды золотых руд

Золото встречается 1) во всех эндогенных генетических типах рудных месторождений (за исключением пегматитов), 2) в двух типах экзогенных (выветривания

и
россыпной
), а также 3) в метаморфизованных месторождениях. Промышленное значение имеют в основном гидротермальные, россыпные и метаморфизованные месторождения.

Золотые руды — природные минеральные образования, содержащие золото в количествах, при которых экономически целесообразно его извлечение современными методами производства.

Kроме собственно золотых руд

известны
золотосодержащие руды
меди, никеля, свинца и цинка, серебра, железа (железистые кварциты), марганца, в которых золото — попутный компонент.

Pазличают (как сказано выше) эндогенные

[подземные],
экзогенные
[поверхностные] и
метаморфизованные
золотые руды.

Эндогенные золотые руды

Все [наверное, точнее сказать — большинство?] эндогенные золотые руды гидротермального

происхождения. Содержат Au от 2-3 до несколько сотен г/т. Образуют массивные плитообразные жилы (месторождения Урала, восточного Забайкалья, Казахстана в CCCP, месторождения Поркьюпайн и Керкленд-Лейк в Канаде, Ашанти в Гане), седловидные жилы (месторождения восточной Сибири в CCCP, Бендиго в Австралии), залежи и трубообразные тела прожилковых и штокверковых руд (месторождения Узбекистана в CCCP, Хомстейк в США).

Состав [эндогенных?] золотых руд разнообразен (до 200 различных минералов). Преобладают золото-сульфидно-кварцевые руды (рудных минералов от 1,5 до 20%). Главный жильный минерал — кварц

. В переменных количествах присутствуют карбонаты кальция и железа, барит, хлорит, серицит, турмалин. Среди
рудных минералов
чаще преобладают
пирит
, реже
арсенопирит
. Им подчинены пирротин, сульфиды и изредка встречающиеся сульфосоли меди и свинца, цинка, висмута, серебра, оксиды железа, самородные серебро, висмут, в единичных случаях — теллуриды.

Гидротермальные месторождения золота довольно распространены. Все они полистадийные. Делятся на плутоногенные

и
вулканогенные
. Плутоногенные свзаны с гранитоидными батолитами. Им свойственны руды сравнительно простового кварцевого состава.

Гидротермальные высокотемпературные месторождения

Гидротермальные высокотемпературные месторождения золото-арсенопиритовой формации залегают среди гранитоидов и докембрийских метаморфических пород. Рудные тела представлены кварцевыми жилами с видимым золотом и сульфидами, а также пиритизированными и окварцованными зонами во вмещающих породах. С арсенопиритом, пиритом и другими сульфидами связаны тонкодисперсные трудноизвлекаемые вкрапления золота (месторождения Урала, Колар в Индии и др.). Месторождения этого типа широко распространены.

Гидротермальные среднетемпературные месторождения

Гидротермальные среднетемпературные месторождения кварц-сульфидной и золото-кварцевой формации представлены жилами, залегающими внутри массивов палеозойских гранитоидов и во вмещающих осадочных породах кровли. Руды сложены кварцем, карбонатами, баритом и сульфидами — пиритом, халькопиритом, сфалеритом, галенитом, блеклыми рудами и др. Золото присутствует в самородном виде в кварце и как примесь в сульфидах. Этот генетический тип широко распространен и имеет большую промышленную значимость. В СНГ к нему относятся некоторые месторождения Урала, Казахстана, Забайкалья и др., за рубежом — месторождения Материнская Шила и Грэсс-Валли в США, Калгурли в Австралии, месторождения Ганы, Кении и др.

Гидротермальные низкотемпературные месторождения

Гидротермальные низкотемпературные месторождения золото-серебряной формации залегают в эффузивных породах и пространственно связаны с областями молодого вулканизма. Рудные тела представлены жилами и штокверковыми зонами, сформированными на малых глубинах. Оруденение неравномерное, кустовое (бонанцевое).

В составе руд отмечаются халцедоноподобный кварц, кальцит, родохрозит, барит, адуляр, сульфиды, минералы серебра, серебристое золото, теллуриды золота. Примерами могут служить месторождения Забайкалья, Северо-Востока России; за рубежом — Комшток, Гольдфильд и др. в США, Эль-Оро в Мексике, месторождения Чили, Перу, Новой Зеландии, Индонезии, Японии, Румынии и др. Кроме золота из руд извлекают серебро.

Экзогенные золотые руды

Экзогенные золотые руды заключены в россыпях

, реже — в зонах окисления золотосодержащих сульфидных месторождений. В россыпях золотые руды представлены рыхлыми и слабосцементированными приповерхностными отложениями, образующими рудные пласты и струи (восточные районы, Урал и другие в России, Калифорния, бассейны рек Колумбия и Юкон, река Клондайк на Аляске в США, южные притоки реки Амазонка, Бразилия и др.).

Месторождения выветривания

Месторождения выветривания представлены железными и свинцовыми шляпами сульфидных месторождений, в которых золото накапливается вместе с гидроокислами железа, карбонатами свинца, вторичными минералами серебра. Золото выделяется в виде пленок в кавернах и ячейках выщелачивания. Иногда в условиях свободного роста образуются кристаллики.

Примерами могут служить железные шляпы колчеданных месторождений Урала, Балкан, Японии и др., зоны окисления полиметаллических месторождений Забайкалья и др.

Золотоносные россыпи

Золотоносные россыпи продолжают играть значительную роль как объекты добычи золота. Наиболее распространены аллювиальные россыпи, содержащие золото. Аллювиальные россыпи в соответствии с условиями залегания подразделяются на русловые, долинные

и
террасовые
.

Русловые и долинные образовались в четвертичное время. Они распространены в бассейнах реки Лены, Колымы, Алдана, Амура, Енисея и др. Террасовые россыпи образовались раньше долинных и залегают па продольных террасах. Они незначительны по размерам, но содержание золота в них бывает богаче, чем в долинных россыпях. Террасовые россыпи расположены в Ленском районе, на Алдане, Колыме. Богатые элювиальные россыпи золота известны в Австралии (округ Калгурли), где они являются продуктом латеритного выветривания золотоносных кварцевых жил.

Морские россыпи встречаются вдоль берегов моря. Образуются они за счет разрушения кварцевых жил и древних береговых россыпей, бедных золотом. Длина морской россыпи Номэ (Аляска) 5 км, ширина 80—100 м. Содержание золота в россыпи местами 200 г/т. Широко развиты погребенные россыпи. Например, юрские россыпи Урала погребены под морскими отложениями мелового возраста или континентальными осадками кайнозоя, россыпи четвертичного возраста на Северо-Востоке и в Сибири перекрыты ледниковыми отложениями.

Метаморфизованные золотые руды

Метаморфизованные золотые руды связаны с пластами золотоносных конгломератов, реже гравелитов

(Витватерсранд в ЮАР, Тарква в Гане, Жакобина в Бразилии и Наллагайн в Австралии и др.). Золото в виде зёрен, изредка полуокатанных (размер от 5 до 100 мкм), заключено в кварц-серицит-хлоритовом цементе, а также в форме тонких прожилок, секущих кварцевую гальку. Проявлено совместно с оксидами и сульфидами железа и других металлов. Содержание Au 3-20 г/т, пробность выше 900.

Метаморфизованные месторождения представлены золотоносными конгломератами — продуктом преобразования древних россыпей, в основном докембрийских. Пример — уникальное месторождение золотоносных конгломератов Витватерсранд в Южной Африке. Однако геологические условия, сходные с условиями Африканского щита, известны на древних щитах Восточно-Европейской и Сибирской платформ, где фиксируются докембрийские олигомиктовые и монокварцевые конгломераты. Проблема выявления промышленных месторождений золотоносных конгломератов представляет большой практический интерес.

Общая характеристика

Различают коренные месторождения (представленные в том числе жилами с содержанием золота 1…30 г/т) и россыпи в виде аллювия (содержание золота 0,5…50 г/м³). Кроме собственно золотоносных руд известны содержащие золото руды меди, никеля, свинца и цинка, серебра, железа (железистые кварциты), марганца, в которых золото выступает как попутный компонент. Обнаружено более 30 минералов золота. Основное промышленное значение имеет золото самородное, второстепенное — кюстелит (Au около 10-20 %) и теллуриды: калаверит — AuTe2 (40-43 % Au), креннерит — (Au, Ag)Те2 (40 % Au), сильванит — (Au, Ag)Te4, (25-27 % Au), петцит Аg3АuТе2 (25 % Au). Редкостные — купроаурид — AuCu2, родит — Au, Rh, порпецит — Au, Pd, ауростибит AuSb2, мальдонит Au2Bi, сульфид золота ютенбогардеит — Аg3AuS2 и др. Попутные компоненты золотоносных руд — Ag, Cu, Pb, Zn, Bi, As, Sb, Те, Hg, W, Sn, Co, Ni.
Различают эндогенные, экзогенные и метаморфизированные золотоносные руды.

Эндогенные золотоносные руды

Все эндогенные золотоносные руды — гидротермального происхождения. Содержание Au составляет от 2-3 до нескольких сотен г/т. Образуют массивные плитоподобные, седловидные жилы, трубоподобные тела, прожилковые и штокверковые залежи.

Богатая золото-кварцевая руда

Состав золотоносных руд разнообразный (до 200 минералов). Преобладают золото-сульфидно-кварцевые руды. Присутствуют карбонаты кальция и железа, барит, хлорит, серицит, турмалин. Среди рудных минералов преобладает пирит, реже — арсенопирит. Им сопутствуют пирротин, сульфиды и сульфосоли меди, свинца, цинка, висмута, серебра, оксиды железа, самородное серебро, висмут, в отдельных случаях — теллуриды.

Экзогенные золотоносные руды

Экзогенные золотоносные руды сосредоточены в россыпях, реже в зонах окисления золотоносных сульфидных месторождений. Золото встречается в виде обкатанных и полуобкатанных зерен, чешуек (размер 0,5-4 мм), иногда сростков с кварцем в песке или глинистом материале, содержащем валуны, гальку и (или) щебень разных пород. Встречаются самородки. Содержание Au — от 100—150 мг/м³ до десятков г/м³, проба — от 800 до 950. В зонах окисления золото концентрируется в нижних частях окисленных руд, преимущественно в ассоциации с гидроксидами железа и марганца, с гипергенными минералами меди, мышьяка, серебра, карбонатами, каолинитом. Содержание Au — от 2-3 до 10 г/т. Золотоносные руды образуют сложные залежи, линзы и гнезда.

Метаморфизированные золотоносные руды

Метаморфизированные золотоносные руды связаны с пластами золотоносных конгломератов, реже — гравелитов. Золото в виде зёрен, изредка полуобкатанных (5-100 мкм), уложено в кварц-серицит-хлоритовом цементе, а также в форме тонких прожилок, которые пересекают кварцевую гальку. Содержание Au 3-20 г/т, пробность выше 900.

Добыча золотоносных руд

Суммарное количество золота, добытого из недр Земли в исторически обозримый период, по оценкам специалистов, превышает 135 тыс. т. Причём, более 40 % этого количества представлено ювелирными изделиями, 30 % сосредоточено в государственных резервах, почти 20 % находится в виде слитков и монет, и только 10 % используется промышленностью в технических и технологических целях.

В конце XX столетия стало выгодно перерабатывать бедные и труднообогатимые руды: включать в эксплуатацию внебалансовые запасы; возобновлять эксплуатацию ранее «законсервированных» карьеров и полигонов, рудников и шахт; перерабатывать техногенные отвалы многих горно-обогатительных комбинатов. Кардинальные изменения произошли в технологии обогащения золотоносных руд за счет кучного, а также кучного с цианизацией и биологического выщелачивания в колоннах, метода «уголь в пульпе», совершенствования других пиро- и гидрометаллургических способов (например, автоклавного обогащения тугоплавких руд). Это обусловило повышение рентабельности вторичной переработки бедных руд и «хвостов» обогатительных фабрик с содержанием золота на уровне 1,0-0,3 г/т и менее.

Резкому снижению прямых затрат и общих потерь в производстве золота способствовали быстрый переход с подземного на открытый способ отработки месторождений (за период с 1988 по 2003 годы доля открытого способа отработки увеличилась в мире с 30 до 70 %) и активное внедрение высокопродуктивной техники на горных работах, при транспортировании и переработке руды.

Мировая добыча золота в 2009 году составила 2572 тонны. Крупнейшие продуценты:

  • Южная Африка (220 т. (2008 г),
  • США (298 т. (2002 г),
  • Австралия (225 т. (2009 г),
  • Индонезия (90 т (2008 г),
  • Китай (313.98 т. (2009 г),
  • Россия (205,2 т. (2009 г),
  • Канада (95 т. (2009 г),
  • Перу (175 т. (2008 г),
  • Узбекистан (85 т. (2001 г),
  • Гана (72 т. (2001 г).

Обогащение золотоносных руд

Процесс обогащения представляет собой единую систему, в которой отдельные элементы являются взаимосвязанными. Добиться высоких результатов можно только с учетом системного подхода, при котором учитывается взаимодействие элементов системы, то есть в данном случае полный комплекс процессов.

Гравитационное обогащение, несомненно, один из наиболее известных процессов. Именно ему история обязана тем, что золото явилось первым металлом, с которым познакомилось человечество за несколько тысячелетий до нашей эры. Сама природа позаботилась об этом, освобождая золотины от вмещающих их минералов в руслах рек и ручьев, протекающих по золотоносным породам, придав им такую привлекательность, на которую не могли не обратить внимание наши далекие предки. С гравитационных методов обогащения началась массовая добыча золота из россыпей, после чего эти методы активно «шагнули» и в фабричную технологию переработки руд коренных месторождений.

Схемы и режимы обогащения золотоносных руд существенно зависят от их минерального состава, разрушенности, наличия или отсутствия примесей, которые осложняют извлечение золота, а также от размеров частичек золота.

Малосульфидные коренные руды

Из малосульфидных коренных руд в зависимости от крупности золото обычно извлекается по одно- или двухстадийной гравитационно-флотационной схеме в соединении с амальгамацией или цианизацией. Если в руде содержится достаточно крупное золото, то после первой стадии дробления используется гравитационное обогащение. Такая схема с использованием гравитационных процессов позволяет извлечь до 80 % золота.

При цианизации отходов гравитационного обогащения извлечение золота повышается до 95 %. Однако цианизация неприемлема для руд, в которых содержатся углеродистые вещества, а также сульфиды меди и сурьмы. Кроме того, цианизацией не извлекается золото, которое тонко вкраплено в сульфидные минералы. В этом случае целесообразно применение флотации золота вместе с сульфидными минералами. При мелком и неравномерном вкраплении сульфидов и золота лучшие результаты могут быть получены при обогащении стадиальными флотационными схемами. Однако в случае получения отходов с содержанием золота выше отвального их подвергают гравитационному обогащению в гидроциклонах или в отсадочных машинах с возвратом песчаной фракции или концентрата в начало процесса или в самостоятельный цикл цианизации.

Золото-пиритные руды

В золото-пиритных рудах тонкодисперсное золото обычно связано с пиритом, поэтому его выделяют флотацией вместе с пиритом. Для получения отходов с отвальным содержанием золота удлиняют фронт контрольной флотации с получением в каждой контрольной операции готового концентрата, который направляется на цианизацию. Если тонковкрапленное в пириты золото не извлекается цианизацией, флотационный концентрат перед цианизацией выжигают при температуре 650 – 700оС с получением пористого недогарка, который обеспечивает раскрытие зёрен золота. Иногда для уменьшения потерь золота с отвальными отходами применяют их цианизацию. Однако, если в руде есть свободное золото, при выжигании оно поглощается легкоплавкими компонентами руды и при дальнейшей цианизации не извлекается. В этом случае применяется схема, в которой цианизации подвергается гравитационный концентрат с растворением свободного золота. Отходы цианизации направляются на сульфидную флотацию с дальнейшим выжигом и цианизацией концентрата.

Сульфидные золото-медные руды

В сульфидных золото-медных рудах золото находится не только в свободном состоянии, но и тонко вкраплено в сульфиды (в основном в халькопирит). В рудах кроме сульфидов меди обычно присутствуют пирит, арсенопирит, пирротин, которые также содержат золото, но в меньшем количестве, чем халькопирит. Такие руды после удаления из них свободного золота гравитационными процессами (отсадкой, обогащением на шлюзах) и измельчения до крупности 70 % класса – 0,2 мм направляются на І коллективную флотацию, куда подаются ксантогенат и сосновое масло. После измельчения отходов флотации до крупности 95 % класса – 0,2 мм из них отсадкой удаляется свободное золото, а слив классификации идёт на ІІ коллективную флотацию, которая также проводится с ксантогенатом и сосновым маслом.

Коллективный концентрат после очистных операций направляется на медную флотацию, где производится депрессия пирита известью, но при пониженной щелочности, потому что в сильнощелочной среде депрессуется золото. Полученный золото-медный концентрат после обезвоживания и сушки направляется на медеплавильный завод. Благородные металлы при электролитическом переделе черновой меди, которая создается при плавке, переходит в электролитические шламы, из которых благородные металлы извлекаются на специальных заводах. Пиритный концентрат направляется на цианизацию для извлечения золота, содержащегося в нём. Общее извлечение золота по такой схеме составляет 90 – 91 %.

Золото-мышьяковые руды

Золото-мышьяковые (золото-арсеновые) руды являются наиболее тяжелым объектом обогащения, потому что могут содержать до 10 % мышьяка в виде арсенопирита со значительным количеством золота тонкого, почти эмульсионного вкрапления. Кроме арсенопирита в рудах обычно содержится халькопирит. Эти руды очень трудно обогащаемы из-за наличия в них углистых сланцев (упорные руды).

Обогащение золото-мышьяковых руд производится по комбинированной гравитационно-флотационной схеме. После выделения из исходной руды отсадкой с очисткой на концентрационных столах гравитационного концентрата отходы гравитационного цикла направляются на флотацию с выделением коллективного концентрата.

Особую сложность при флотации сульфидов представляют углеродистые вещества, которые переходят в концентрат и значительно повышают их выход, но снижают содержание золота. Кроме того, эти концентраты в дальнейшем не могут перерабатываться цианизацией, потому что углистые сланцы являются сорбентом золото-цианистого комплекса. В этом случае углистый концентрат из коллективного концентрата выделяют с добавлением извести, вспенивателя и керосина, а отходы флотации углистых сланцев с добавлением медного купороса разделяют на золото-пиритный и золото-арсеновый концентраты.

Полиметаллические руды

В полиметаллических рудах золото обычно находится в тонко дисперсном состоянии в сульфидных минералах, в первую очередь в пирите и халькопирите, реже в галените и сфалерите, и, кроме того, может находиться в свободном состоянии.

Технология извлечения золота из полиметаллических руд состоит из улавливания свободного золота в цикле измельчения и более полного его извлечения с концентратами, в которых оно связано с основными ценными компонентами.

Гравитационное обогащение золотосодержащих руд

В настоящее время гравитационное концентрирование золота достаточно широко применяют на золотоизвлекательных фабриках во всех странах мира, в том числе и тех, которые являются основными производителями данного металла.

По характеру перерабатываемого сырья эти фабрики разделены на 3 группы:

  • кварцевые и кварцево-сульфидные руды, содержащие благородные металлы преимущественно в цианисторастворимой форме.
  • упорные для цианирования пиритные и мышьяково-пиритные руды с тонковкрапленным золотом в сульфидах, а также руды, содержащие сорбционно-активное углистое вещество.
  • комплексные руды, содержащие, наряду с золотом и серебром, тяжелые цветные металлы (медь, свинец, цинк, сурьму), а также уран.

Внутри каждой группы определено количество предприятий, применяющих процессы гравитационного, флотационного обогащения и цианирования (табл.1, 2).

Таблица 1. Масштабы применения гравитации, флотации и цианирования

Наименование

показателей

Группы предприятий
Простые

руды

Упорные

руды

Комплексные

руды

Всего
Общее число предприятий 142 53 44 239
В том числе количество предприятий, применяющих:
гравитацию 42 17 19 78
флотацию 26 36 43 106
цианирование 137 47 25 209

Таблица 2. Гравитационное обогащение руд

Наименование

показателей

Группы предприятий
Простые руды Упорные руды Комплексные руды Всего
Количество предприятий, применяющих гравитационное обогащение 42 17 19 78
В том числе:

в качестве единственного

технологического процесса

1 1
в комбинации с цианированием 23 23
в комбинации с флотацией

(без цианирования)

2 3 5 10
в комбинации с флотационным

обогащением и цианированием

16 14 14 44

Гравитационное обогащение практикуют более 1/3 предприятий, однако гравитация без сочетания с другими процессами почти не применяется.

В последние годы, в технологии гравитационного обогащения золоторудного сырья достигнут большой прогресс. Это проявляется, прежде всего, в создании новых аппаратов, способных извлекать не только крупные, но и очень мелкие частицы металлического золота, освобождаемые в процессе измельчения руды такие как центробежные концентраторы и центробежные отсадочные машины, в которых интенсивность разделения частиц золота и других минералов с меньшей плотностью зерен многократно возрастает.

В подавляющем большинстве случаев гравитацию применяют в сочетании с цианированием, флотацией или обоими этими процессами. Для Простых руд наиболее характерны схемы гравитационного и гравитационно-флотационного обогащения с цианированием хвостов флотационных, а в ряде случаев и гравитационных концентратов. Главное назначение гравитации в этих вариантах — выведение из руды крупного свободного золота в продукты (концентраты), перерабатываемые в отдельном от основной массы руды металлургическом цикле.

Кроме повышения (как правило на 2-4% общего извлечения золота), это позволяет предотвратить или, по крайней мере, существенно снизить аккумуляцию золота в измельчительных и перемешивающих аппаратах.

Флотация, как и гравитационное обогащение, относится к методам механического обогащения, когда концентрирование и разделение минеральных компонентов осуществляется без нарушения их кристаллической структуры и химического состава. К числу таких методов могут быть также отнесены магнитная, электрическая и радиометрическая сепарации (включая фотометрическую сортировку), разделение минералов по форме и крупности частиц, избирательная адгезия (улавливание липкими поверхностями) и некоторые другие процессы. Однако в отличие от перечисленных выше методов, в том числе и от гравитационных, флотация базируется на применении химических реагентов, выполняющих самые различные функции.

В основу флотационного обогащения, осуществляемого, как правило, в водной среде, заложен принцип придания зернам извлекаемого компонента гидрофобных свойств, благодаря чему они не смачиваются водой и «выталкиваются» на границу жидкой и газовой фаз, даже если плотность этих зерен во много раз превышает плотность воды.

Гидрофобность минеральным зернам придают реагенты-коллекторы (собиратели), вводимые в суспензию и закрепляющиеся на поверхности извлекаемых частиц, например сульфидов. Процесс отделения последних от остальной рудной массы («хвостов» флотации) интенсифицируется за счет аэрирования пульпы воздухом, использования специальных вспенивателей и реагентов, депрессирующих флотацию минералов пустой породы, а также за счет регулирования водородного показателя (рН), т.е. создания кислой, щелочной или нейтральной среды пульпы.

Благодаря чрезвычайно широкому ассортименту флотационных реагентов, общее количество которых составляет порядка 6-8 тысяч, созданы возможности концентрирования флотационным путем фактически любых минералов. На этой же основе разработаны принципы и методы разделения (селекции) различных минеральных смесей с получением индивидуальных продуктов (концентратов), удовлетворяющих рыночным требованиям и условиям их последующего использования или химико-металлургической переработки. В этом плане флотация, как способ механического обогащения минерального сырья, обладает очень большими возможностями, что обуславливает ее широкое использование в различных отраслях промышленности, в том числе в цветной и чёрной металлургии, угольной промышленности, при производстве алмазов, фосфора графита, барита, магнезита, чистых коалиновых глин и других минеральных продуктов. В настоящее время флотацией ежегодно перерабатывают более 2 млрд. т полезных ископаемых, и это является лучшей характеристикой этого технологического процесса.

Флотация играет достаточно важную роль при обогащении золоторудного сырья. Однако при этом учитывается одно важное обстоятельство, которое отличает возможности флотации золотосодержащих руд от большинства руд цветных металлов. Для последних характерно четкое разделение основных технологических переделов: обогащения руд и металлургической переработки концентратов. Эти стадии осуществляют на отдельных предприятиях (обогатительных фабриках, металлургических заводах), которые часто входят в состав различных производственных объединений. В то же время подавляющее количество золотоизвлекательных фабрик работают по схемам с законченным циклом обработки руды до конечной товарной продукции – слитков золота (сплава Доре). По этой причине переработку руд на золотодобывающих предприятиях, как правило, производят по комбинированным схемам, сочетающим операции гравитационно-флотационного обогащения с цианированием и другими химико-металлургическими операциями (плавка, обжиг, автоклавное или биохимическое окисление и др.).

Флотационное обогащение руд на золотоизвлекательных фабриках

Наименование показателей Группы предприятий
Простые руды Упорные руды Комплексные руды Всего
Общее количество предприятий, подвергнутых анализу 142 53 44 239
Из них применяют флотационное обогащение 26 36 43 105
в том числе:

в качестве единственного технологического процесса

3 13 16
в комбинации с цианированием и гравитацией 26 33 30 89

По флотационной активности в рудах, золотосодержащие минералы могут быть расположены в следующей последовательности (в порядке убывания):

  • сростки металлического золота с сульфидами железа (пирит, арсенопирит) и сульфидами тяжелых цветных металлов (халькопирит, галенит и др.);
  • собственно золотосодержащие сульфиды, в которых золото присутствует в виде тонких металлических включений;
  • свободные зерна золота и природных сплавов золота с серебром (электрум, кюстелит и др.)

Наибольший эффект от применения флотации обеспечивается при извлечении золота из руд с преимущественно сульфидной минерализацией. К окисленным золотосодержащим рудам флотация применяется крайне редко, поскольку она не обеспечивает удовлетворительных показателей извлечения металла в концентраты, сильно уступая в этом отношении процессу прямого цианирования руды. Однако использование флотации оказывается очень полезным в процессе минералогических исследований для выделения из окисленных руд тонких зерен свободного золота для их последующего микроскопического исследования с целью установления крупности и морфологии золотин. Как правило, процесс флотации золотосодержащих руд производят в слабощелочной среде (рН=7-9). Для создания такой среды применяют соду или известь (последняя используется реже, т.к. обладает слабовыраженным депрессирующим свойством по отношению к золотосодержащему пириту, а в некоторой степени и к самородному золоту).

В качестве собирателей (коллекторов) применяют этиловый или бутиловый ксантогенаты. В качестве пенообразователя обычно используют сосновое масло или крезол. Для активации пирита в пульпу (при измельчении) подается медный купорос.

Депрессия минералов пустой породы, в том числе глин, производится силикатом и (реже) сульфидом натрия. Последний также применяется для сульфидирования поверхности частиц окисленных минералов (малахит, азурит, церуссит, англезит, смитсонит и др.) с целью придания им флотационной активности.

Для флотации золото- и серебросодержащих руд, в зависимости от их вещественного состава, применяют самые различные аппараты: многокамерные механические, пневмомеханические, пневматические, а также большеобъемные (чановые) флотомашины. В последние годы разработаны и успешно функционируют на ряде золотодобывающих предприятий флотационные колонны, предназначенные для обогащения тонкоизмельченных и шламистых руд для концентрирования самородного золота и крупнозернистых золотосодержащих сульфидов в циклах измельчения руды. Мгновенная флотация рассматривается как альтернатива гравитационным методам извлечения золота из «свежеизмельченных» руд и эффективно применяется на фабриках.

Применяют флотацию в качестве единственного технологического процесса крайне редко. В основном это предприятия, перерабатывающие комплексные руды, которые наряду с золотом и серебром, содержат другие цветные металлы (медь, свинец, цинк, сурьму) в концентрациях и минеральных формах, допускающих возможность и экономическую целесообразность попутного извлечения этих металлов в ликвидную товарную продукцию. Осуществление флотации в специальном реагентном режиме позволяет выделять из золотосодержащих руд кондиционные по составу медные, свинцовые, цинковые и сурьмяные концентраты, которые направляют для последующей переработки на специализированные металлургические заводы. В эти концентраты при флотации переходит также и значительная часть присутствующих в исходном сырье благородных металлов. Возможности их последующего извлечения определяются технологией основного металлургического производства.

Основной стратегией золотодобывающих предприятий, осуществляющих комплексную переработку полиметаллических руд, кроме получения при флотации кондиционных концентратов цветных металлов, является обеспечение максимально возможного извлечения золота на месте с использованием других технологических процессов, в частности гравитационного обогащения и цианирования. Такого рода комбинированную гравитационно-флотационно-цианистую технологию при переработке комплексных руд практикуют большинство предприятий.

Благоприятными объектами для использования флотации являются технологически упорные руды, золото в которых тесно ассоциировано с сульфидами железа и не может быть извлечено цианированием без применения достаточно сложных и дорогих подготовительных процессов: окислительного обжига, автоклавного или биохимического окисления сульфидов.

Флотация позволяет не только сконцентрировать золотосодержащие сульфиды (пирит, арсенопирит) в небольшом объеме концентрата, направляемого на металлургическую обработку, но и осуществить разделение этих сульфидов, например пирита и арсенопирита или пиритов различной генерации, различающихся по содержанию золота.

Как один из вариантов обогащение бедных золотых руд (Аu 2,2 г/т) происходит по комбинированной гравитационно-флотационной технологии. В процессе флотации используют специальный активатор металлического золота и сростков золота с пиритом. В сочетании с амиловым ксантогенатом калия (коллектор пирита) и углекислой содой, вводимой в пульпу для поддержания оптимального значения рН=8,4-8,6, реагент позволяет извлечь в концентрат 85% золота с сохранением в хвостах флотации порядка 75% пирита, представленного в основном фракциями, не содержащими золота. С учетом гравитации общее извлечение золота в концентраты на фабрике составляет более 90% — при выходе концентратов всего лишь 1,9% от руды.

При переработке углистых сульфидных руд улучшение качества и снижение выхода золотосодержащих концентратов достигается за счет предварительного флотационного выведения из руды отвальных по содержанию золота угольных фракций или же путем последовательной флотации углерода и сульфидов с тщательным подбором реагентного режима на каждой стадии.

При одновременном наличии в рудах упорного (в сульфидах) и легко цианируемого золота флотационное обогащение дополняют операцией цианирования, которому подвергают либо исходные руды перед флотацией, либо хвосты флотационного обогащения. Получаемые при флотации пиритные и арсено-пиритные концентраты также перерабатывают на месте методом цианирования, но только после предварительного химического, термохимического или биохимического вскрытия золотосодержащих сульфидов.

На предприятиях, перерабатывающих простые по составу руды с относительно легкоцианируемым золотом, флотацию применяют только в том случае, если она обеспечивает получение отвальных по золоту хвостов и если при этом существенно снижаются затраты по гидрометаллургическому переделу, поскольку цианированию подвергается не вся масса руды, а только флотационные концентраты.

Флотация стала чрезвычайно разнообразным процессом по применяемым реагентам и аппаратурному оформлению, что позволяет использовать ее значительно шире чем раньше, в том числе на бедных и сложных рудах. За счет флотации удается повысить извлечение золота и обеспечить приемлемую рентабельность отработки месторождений. В то же время многовариантность процесса требует разносторонних и тщательных лабораторных и технологических исследований руд, а также большого опыта и знаний, чтобы найти именно тот вариант, который обеспечит наилучший эффект для конкретных условий.

Основой современной технологии извлечения золота, а также серебра из руд коренных месторождений является цианирование, заключающееся в избирательном (селективном) выщелачивании благородных металлов водными растворами щелочных цианидов: натрия, калия, кальция. Затем растворенные металлы выделяются из растворов различными методами с получением в конечном итоге высококачественной товарной продукции — металлических слитков (металл Доре), направляемых на аффинажные заводы. В ряде случаев аффинирование золота и серебра производится непосредственно на месте, т.е. в условиях золотодобывающего предприятия.

Необходимо отметить, что в прежние времена цианирование гравитационных концентратов, содержащих крупные частицы золота и других тяжелых минералов (в частности сульфидов), в аппаратах бакового типа (механических и пневмомеханических агитаторах) считалось неприемлемым из-за низкой скорости растворения золота и трудностей поддержания суспензии во взвешенном состоянии, результатом чего являлось оседание тяжелых фракций на дне аппаратов. В настоящее время эти проблемы решаются благодаря использованию горизонтальных барабанных перемешивателей, а также аппаратов с принудительной циркуляцией цианистых растворов и конусных реакторов. Эти аппараты позволяют обрабатывать цианированием золотосодержащие гравиоконцентраты практически с любой гранулометрической характеристикой. Таким образом, традиционная технология гравитационного концентрирования золота с глубокой доводкой первичных концентратов до богатых «золотых головок», пригодных для плавки на золото серебряный сплав (металл Доре), дополняется альтернативным методом гидрометаллургической переработки концентратов с умеренным содержанием металла, после их одно- или двукратной перечистки на — концентрационных столах или других доводочных аппаратах.

Эффективность такого варианта еще более возрастает, если цианированию подвергают не только гравиоконцентраты, но также и хвосты гравитационного обогащения руды (с использованием более «мягкого» режима выщелачивания), поскольку в этом случае существует возможность направлять твердые остатки «концентратного» цикла в общий гидрометаллургический процесс с получением в конечном итоге единого товарного продукта.

История мировой горно-металлургической промышленности, вероятнее всего, не знает других примеров столь динамичного развития и освоения технологических процессов, каковым является цианистое выщелачивание золота. Об этом, например, свидетельствуют следующие цифры. Процесс цианирования запатентован в октябре 1887 г.. В следующем 1888 г. создана демонстрационная полупромышленная установка, а в 1889 г. построена первая в мире фабрика с цианированием золотосодержащих руд. Еще через год вступила в строй вторая промышленная установка цианирования, производство золота на которой за 4 года возросло с 9 кг (1890 г.) до 9 т (1893 г.), т.е. в тысячу раз. Последовавшее за этим бурное развитие технологии цианирования привело к тому, что данный процесс очень быстро занял ведущее место в общем мировом производстве золота из рудного сырья, которое за 110 лет (1890-2000 гг.) выросло с 200 до 2500 т в год. В течение последних 20 лет с использованием цианирования из руд коренных месторождений получено в мире 92% золота (остальные 8% приходятся на долю металла, извлекаемого попутно из руд тяжелых цветных металлов: меди, свинца, сурьмы и др.).

Технологические преимущества цианирования, осуществляемого с использованием растворов с очень низкой концентрацией цианида (0,3-1 г/л и ниже) заключается, прежде всего, в том, что оно производится в слабощелочной среде (рН=9,5~11,5) при нормальной («комнатной») температуре и атмосферном давлении, что определяет высокую экономическую эффективность цианирования золотых руд.

Важную роль сыграли разработки Горного Бюро США (Burea of Mine, US BM) по адсорбционному извлечению золота из цианистых cpeд гранулированными активированными углями (1952 г.) и кучному цианистому выщелачиванию (КВ) крупнокусковых руд и рудных отвалов (1969 г.).

Первое коммерческое предприятие кучного выщелачивания золота с угольной адсорбцией было создано в 1974 г. применительно к отвалам горных пород, содержащим менее 2,5 г/т золота, что в то время делало нерентабельной переработку их по обычной фабричной технологии. В 80-х годах прошлого столетия процесс KB получил чрезвычайно широкое распространение в золотодобывающей промышленности США, а затем и в других странах. Этому способствовала очередная разработка USBM по предварительной агломерации тонкодробленых и шламистых руд перед KB (1979 г.). В России за последние 10 лет, создано порядка 20 промышленных предприятий, осуществляющих кучное выщелачивание золоторудного сырья, с общим объемом переработки более 5 млн.т в год.

Как правило, кучному выщелачиванию подвергаются руды, добываемые открытым способом, с содержанием золота от 0,5 до 1,5 г/т, из которых цианированием извлекается от 50 до 80% металла. Это обеспечивает рентабельную работу предприятия различного масштаба: от 0,5 до 15 млн.т руды в год. Иногда применяются сочетания операций кучного и дамбового выщелачивания руд.

Основная масса руды подвергается кучному выщелачиванию после предварительного дробления до 65 мм и агломерации дробленой руды с известью и раствором цианида. Переработку бедных руд (Au менее 0,5 г/т ) производят без дробления и агломерации методом дамбового выщелачивания. Извлечение золота в растворы составляет 70%, в т.ч. 80% — при кучном и 65% — при дамбовом выщелачивании.

Другим направлением повышения эффективности гидрометаллургического процесса является интеграция операций кучного и дамбового выщелачивания с фабричной технологией цианирования.

Процесс дамбового выщелачивания осуществляют на руде «забойной» крупности без предварительного дробления. Извлечение золота из растворов производят на отдельной установке. Насыщенные золотом угли обоих циклов выщелачивания объединяют и подвергают элюированию по стандартной технологии. Общее извлечение золота составляет 90%, в том числе в цикле фабричной технологии — 95% и при дамбовом выщелачивании — 73%.

Возможность рентабельной переработки методом цианирования бедных золоторудных материалов подтверждается практикой работы предприятий, осуществляющих доизвлечение золота из лежалых хвостов обогащения прошлых лет. Данный вопрос, учитывая его значимость (в том числе и для российской золотодобывающей промышленности), заслуживает специального рассмотрения в отдельной публикации. Здесь следует лишь отметить, что с учетом минимальных затрат на разработку данного вида «технологенных» месторождений золота и подготовку лежалых хвостов к последующей гидрометаллургической переработке (цианирование по фабричной технологии) рентабельность процесса обеспечивается при извлечении золота на уровне 0,4-0,5 г/т исходного сырья.

Объектами применения цианирования являются не только бедные, но и достаточно богатые золотосодержащие материалы, в частности, концентраты флотационного и гравитационного обогащения руд.

Что касается гравитационных золотосодержащих концентратов, то до последнего времени единственным приемлемым методом их переработки считалась глубокая доводка (перечистка) с последующей плавкой получаемых «золотых головок» на металлические слитки. Однако сейчас созданы специальные аппараты, позволяющие выщелачивать цианистыми растворами крупные зерна металлического золота.

Важным направлением использования цианистого процесса является переработка упорных руд и концентратов. К таковым относят материалы, содержащие дисперсные включения золота в плотных и нерастворимых в цианиде зернах сульфидов железа: пирите и арсенопирите. Длительное время изучалась возможность переработки таких материалов «бесцианидными» гидро- или пирометаллургическими методами. Но положительных, с экономической точки зрения, результатов так и не получено. Поэтому практически все ныне действующие золотодобывающие предприятия осуществляют извлечение золота из упорных пиритных и арсено-пиритных руд (концентратов) тем же цианистым процессом, но только после дополнительного механического (тонкий и сверхтонкий помол), химического (автоклавное окисление), термохимического (обжиг) или биохимического вскрытия золотосодержащих сульфидов. Как правило, эти подготовительные операции стоят значительно дороже, чем само цианирование. Однако в совокупности они обеспечивают высокое извлечение золота в конечную товарную продукцию и общую экономическую эффективность технологического процесса.

Существенную роль цианирование играет и при переработке комплексных золотых руд, содержащих медь, свинец, сурьму, цинк и другие тяжелые цветные металлы, попутное извлечение которых представляется технологически возможным и экономически целесообразным.

Золотосодержащие минералы

В природе обнаружено более 30 золотосодержащих минералов.

Из них — 15 минералов золота:

  1. самородное золото с примесями серебра, меди и др.,
  2. электрум Au и 25—45% Ag,
  3. порпесит AuPd,
  4. медистое золото,
  5. бисмутоаурит (Au, Bi),
  6. родистое золото,
  7. иридистое золото,
  8. платинистое золото
  9. золотистое серебро — кюстелит
    (Au ок. 10-20%)
  10. и другие

Остальные золотосодержащие минералы представлены теллуридами золота

:

  1. калаверит AuTe2 (40-43% Au),
  2. креннерит (Au, Ag)Te2 (ок. 40% Au),
  3. сильванит (Au, Ag)Te4 (25-27% Au),
  4. петцит Ag3AuTe2 (25% Au),
  5. мутманит (Ag, Au)Te,
  6. монтбрейит Au2Te3,
  7. нагиагит Pb5AuSbTe3S6
  8. .

Для золота характерна самородная

форма. Среди других его форм стоит отметить
электрум
— сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в
сульфиды
и
арсениды
.

Oсновное промышленное значение имеет самородное золото

, второстепенное —
кюстелит
и теллуриды:
калаверит
,
креннерит
,
сильванит
,
петцит
. Oчень редки
купроаурид
— AuCu2,
родит
— Au, Rh,
порпецит
— Au, Pd,
ауростибит
— AuSb2,
мальдонит
— Au2Bi, сульфид золота
ютенбогардеит
— Ag3AuS2 и др. Попутные компоненты собственно золотых руд — Ag, Cu, Pb, Zn, Bi, As, Sb, Te, Hg, W, Sn, Co, Ni.

В природе существует естественный сплав золота и серебра, который называется электрум. При разработке рудных месторождений солнечного металла из породы добывают сопутствующие ценные химические элементы: иридий; платину; осмий; рутений; палладий; никель; медь.

Самородное золото

Золото самородное — природный твёрдый раствор Au + Ag. Cодержание серебра в самородном золоте — до 10%. Имеются признаки прерывистости этого ряда: существенно разная распространённость самородного золота разной пробы (преобладание 930-900, 820-780, 650-600, крайняя редкость — 550) до золотистого серебра — т.н. кюстелитa

. Характерна фазовая неоднородность индивидов самородного золота c обособлением фаз состава Ag, Ag3, Au, AgAu.

Самородный солнечный металл не является химически чистым материалом, в нем всегда присутствуют примеси: серебра (до 50%); меди (до 20%); железа; ртути; висмута; металлов платиновой группы; теллура.

Oбычны примеси Cu (0,001-0,9%), Fe, Mn, Pb, реже Bi, Sb, Hg, Te, Se, Pt, In и др. (0,00n — 0,n%). При повышенных количествах примесей выделяются разновидности самородного золота (в основном редкие): золото медистое, висмутистое, иридистое, платинистое и др. Известны природные амальгамы Au. Примеси Ag, Fe и другие нередко концентрируются по зонам роста индивидов самородного золота и по границам зёрен или в их отдельных участках. Золото самородное содержит включения углекислого и других газов. Cостав самородного золота зависит от типа и глубины…

Россыпные месторождения золота

Экзогенные месторождения золота созданы процессами, происходящими на поверхности Земли. В результате экзогенных процессов возникло несколько типов месторождений, из которых наиболее интересны месторождения зоны выветривания и россыпи (россыпные месторождения).

Россыпями называют скопление зерен (частиц) тяжелых и относительно устойчивых к агентам выветривания полезных минералов в рыхлых сцементированных обломочных отложениях, возникших в результате разрушения первичных по отношению россыпям коренных пород.

В коренных породах полезные минералы находятся в сростках с породообразующими. Первым условием процесса образования россыпи является дезинтеграция или высвобождение полезных составляющих в результате физического (теплового расширения, расклинивающего давления жидкости, сжатия) и химического (процесса гидратации, диссоциации и окисления) выветривания.

В результате происходит первичная концентрация более устойчивых, полезных золотосодержащих минералов за счет разрушения или растворения неустойчивых минералов и перехода их во вторичные мелкозернистые глинистые образования, которые с легкостью переносятся, увлекаемые собственным весом по наклонной поверхности или стремительным водным потоком.

Источниками золотоносных промышленных россыпей как правило являются коренные месторождения, рудопроявления и промежуточные коллекторы (более старые и крупные россыпи). Однако стопроцентной связи здесь нет, не все коренные источники сопровождаются россыпями и напротив, богатые и крупные золотоносные россыпи нередко не имеют адекватных по качественным и количественным характеристикам коренных рудных источников.

Палладий.

Палладий так же извлекается как вторичный компонент из медно-никелевых, хромовых и других руд. Безусловным мировым лидером по добыче палладия является российский концерн ОАО «ГМАК «Норильский никель», около 40% от мировой добычи палладия. Также компания ведет добычу руды на Кольском полуострове в Мурманской области. Вторым важнейшим мировым источником палладия является Бушвелдский комплекс в ЮАР. Это уникальное месторождение также обеспечивает порядка 40% мировой добычи палладия и является крупнейшим в мире по запасам металлов платиновой группы.

Серебро.

Содержание серебра в земной коре примерно 70 мг на одну тонну. В самородном виде встречается реже, чаще находится в залежах с другими полезными ископаемыми. В основном серебро извлекают из золото серебряных, медных, свинцово-цинковых руд – как попутный компонент, однако не всегда извлечение серебра является экономически выгодным и целесообразным. Также перспективным источником добычи серебра является морская вода, содержание серебра в морской воде значительно выше, чем в земной коре. Наиболее значительные запасы серебра сосредоточены в Перу – 120 000 тонн.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]