Золото – химический элемент: полная характеристика

х.н. О.В. Мосин ЗОЛОТАЯ ВОДА

Золото (лат. Aurum), Au – это химический элемент I группы периодической системы Менделеева с атомным номером 79 и атомной массой 196,9665.

В природе золото – это тяжелый металл желтого цвета

. Состоит только из одного устойчивого изотопа 197Аu.

Золото было первым металлом, известным человеку. Изделия из золота найдены в культурных слоях эпохи неолита (5-4-е тысячелетия до н. э.). В древних государствах — Египте, Месопотамии, Индии, Китае добыча золота, изготовление украшений и других предметов из него существовали за 3-2 тысячелетия до н. э.

Золото часто упоминается в Библии, «Илиаде», «Одиссее» и других памятниках древней литературы. Алхимики называли золото «царем металлов» и обозначали его символом Солнца. Открытие способов превращения неблагородных металлов в золото было главной целью алхимии.

Распространение золота в природе

Среднее содержание золота в земной коре составляет 4,3·10-7% по массе. В магме и магматических породах золото рассеяно, но из горячих вод в земной коре образуются гидротермальные месторождения золота, имеющие важное промышленное значение (кварцевые золотоносные жилы и др.). В природе золото в основном находится в свободном (самородном) состоянии и лишь очень редко образует минералы с селеном, теллуром, сурьмой, висмутом. Пирит и другие сульфиды часто содержат примесь золота, которое извлекают при переработке медных, полиметаллических и других руд.

В биосфере золото мигрирует в комплексе с органическими соединениями и механическим путем в речных взвесях. Один литр морской и речной воды содержит около 4·10-9 г золота. На участках золоторудных месторождений подземные воды содержат приблизительно 10-6г/л золота. Оно мигрирует в почвах и оттуда попадает в растения, которые концентрируют золото — хвощи, кукуруза. Разрушение эндогенных месторождений золота приводит к образованию россыпей золота, имеющих промышленное значение. Золото добывается в 41 стране; его основные запасы сосредоточены в России, ЮАР и Канаде.

Золото (III) [ править ]

Комплексы золота (III) являются четырехкоординатными, квадратными, плоскими, диамагнитными , токсичными, с 16 электронными видами. Когда формальное координационное число меньше 4, лиганды, такие как хлор, могут восполнить его, образуя мостиковый лиганд. Еще одна стратегия — внутримолекулярное хелатирование. В целом соединения золота (III) токсичны и поэтому менее изучены, чем золото (I). Комплексы моноарилзолота (III) представляют собой один хорошо изученный класс комплексов. Их часто получают путем прямого электрофильного аурирования аренов AuCl 3 . [7] Гомолептические тетраалкилауратные (III) комплексы (например, Li ) также хорошо охарактеризованы. [8]

Физические свойства золота

Золото — мягкий, очень пластичный, тягучий металл

(может быть проковано в листки толщиной до 8·10-5 мм, протянуто в проволоку, 2 км которой весят 1 г), хорошо проводит тепло и электричество, весьма стойко против химического воздействий. Кристаллическая решетка Золото гранецентрированная кубическая, а = 4,704 Å. Атомный радиус 1,44 Å, ионный радиус Au1+ 1,37 Å. Плотность (при 20°С) 19,32 г/см3, tпл 1064,43 °С, tкип 2947 °С; термический коэффициент линейного расширения 14,2·10-6 (0-100 °С); удельная теплопроводность 311,48 вт/(м·K) [0,744 кал/(см·сек·°С)]; удельная теплоемкость 132,3 дж/(кг·К) [0,0316 кал/(г·°С)] (при 0°-100 °С); удельное электросопротивление 2,25·10-8ом·м (2,25·10-6 ом·см) (при 20 °С); температурный коэффициент электросопротивления 0,00396 (0-100 °С). Твердость золота по Бринеллю 180 Мн/м2 (18 кгс/мм2) (для Золота отожженного около 400 °С).

Место золота в периодической таблице Менделеева и его общие свойства

Какие можно выделить свойства золота? В детище русского гения драгоценный металл занимает 79 номер, и обозначается как Au. Au — сокращенно от его латинского названия Aurum, которое переводится как «сияющий». Оно находится в 6 периоде 11 группы, в 9 ряду.

Электронная формула золота, которая является причиной ценных свойств золота — 4f14 5d10 6s1, все это говорит о том, что атомы золота имеют существенную молярную массу, большой вес и сами по себе инертны. Ко внешним электронам такой структуры относятся только 5d106s1 .

И именно инертность золота является его самым ценным свойством. Из-за нее золото очень хорошо сопротивляется воздействию кислот, почти никогда не окисляется, и окислителем выступает невероятно редко.

Следовательно, оно относится к т.н. «благородным» металлам. «Благородными» металлами и газами в химии называют элементы, которые почти ни с чем не реагируют в нормальных условиях.

Золото смело можно назвать самым благородным металлом, так как оно стоит правее всех своих собратьев в ряду напряжений.

Химические свойства золота

Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов, при нормальных условиях оно не реагирует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам,

в отличие от металлов обычных, легко разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что поколебало уверенность в его инертности.

Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O

Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей.

Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:

4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−

В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °С с образованием хлорида золота(III), то в водном растворе (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:

2Au + 3Cl2 + 2Cl− → 2[AuCl4]−

Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3.

Со фтором золото реагирует в интервале температур 300−400°C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.

Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму).

В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:

4Au + 8NaCN + 2H2O + O2 → 4Na[Au(CN)2] + 4NaOH

Эта реакция лежит в основе важного промышленного способа извлечения золота из руд.

Но самыми необычными являются свойства мелкораздробленного золота. При восстановлении золота из сильно разбавленных растворов оно не выпадает в осадок, а образует интенсивно окрашенные коллоидные растворы – гидрозоли, которые могут быть пурпурно-красными, синими, фиолетовыми, коричневыми и даже черными. Так, при добавлении к 0,0075%-ному раствору H[AuCl4] восстановителя (например, 0,005%-ного раствора солянокислого гидразина) образуется прозрачный голубой золь золота, а если к 0,0025%-ному раствору H[AuCl4] добавить 0,005%-ный раствор карбоната калия, а затем по каплям при нагревании добавить раствор танина, то образуется красный прозрачный золь. Таким образом, в зависимости от степени дисперсности окраска золота меняется от голубой (грубодисперсный золь) до красной (тонкодисперсный золь). При размере частиц золя 40 нм максимум его оптического поглощения приходится на 510–520 нм (раствор красный), а при увеличении размера частиц до 86 нм максимум сдвигается до 620–630 нм (раствор голубой). Реакция восстановления с образованием коллоидных частиц используется в аналитической химии для обнаружения малых количеств золота.

Науке известны и органические соединения золота.

Так, действием хлорида золота(III) на ароматические соединения получают соединения, устойчивые к воде, кислороду и кислотам, например: AuCl3 + C6H6  C6H5AuCl2 + HCl. Органические производные золота (I) стабильны только в присутствии координационно связанных с золотом лигандов, например, триэтилфосфина: CH3Au·P(C2H5)3.

Techemy

Распростронение золота в природе. Золото встречается преимущественно в виде самородков. В 1872 году, в Австралии был найден кусок самородного золота, весом 250 кг. Рудное или жильное золото находится в первичных месторождениях, а россыпное или промывное золото — во вторичных месторождениях (речной песок). В воде мирового океана концентрация золота исчисляется 4-10 мг./т. воды, т.е. запас золота во всей массе воды океанов составляет примерно 10.000.000.000 т. металла. Промышленная добыча золота из морской воды не выгодна. Отднако в экспериментальных работах, из морской воды удалось получить металлическое золото, путем его осаждения на ионообменных смолах, с последующим вымыванием и осаждением. Золото содержится не только в виде самородного металла, но и в различных рудах, а также в виде растворимых комплексных соединений с сероводородом, содержащихся в глубинных геотермальных водах. Известны случаи, когда на обсадных трубах геотермальных электростанций, обнаруживали тонкий слой золота, которое осаждается в результате разложения комплексных соединений золота при подъеме на поверхность.

Получение золота. 1. Промывка породы содержащей золото. 2. Извлечение из породы амальгамным способом. Процесс основан на свойстве ртути растворять золото с образованием амальгамы. После растворения золота, амальгаму фильтруют от различных нерастворимых примесей (песок, оксиды и др.). При нагревании, ртуть легко отгоняется, а золото остается. Полученное золото может содержать примеси меди, серебра и других металлов, способных образовывать амальгамы с ртутью. Кроме того, этот способ получения золота, является крайне опастным для здоровья, в связи с высокой токсичностью паров ртури. 3. Извлечение из породы цианидным способом. Породу обрабатывают раствором цианида натрия при продувке кислородом (воздухом), при этом золото переходит в раствор в виде комплексной соли:

4Au + 8NaCN + 2H2O + O2 = 4Na[Au(CN)2] + 4NaOH

Из раствора золото осаждают с помощью цинковой пыли

2[Au(CN)2]— + Zn = [Zn(CN)4]2- + 2Au

затем обрабатывают разбавленной серной кислотой, для отделения цинка, промывают, высушивают и очищают электролитическим методом, электролитом служит H[AuCl4] + HCl.

Физические свойства золота. Температура плавления золота: 1063*С; Плотность золота при 20*С: 19.32 г/см3. Желтый мягкий блестящий металл с очень хорошей электрической и тепловой проводимостью. Самый ковкий и пластичный металл: 1 г. золота можно вытянуть в нить длиной 3240 м. а золотую пластинку размером 1 х 1 см. и толщиной 0,5 мм. можно расплющить до размера площадью в 4 квадратных метра.

Химические свойства золота. На воздухе золото абсолютно устойчиво. Реагирует с хлором, бромом, с царсокй водкой (алхимики называли золото — царем металлов, поэтому, смеси кислот, которая растворила золото дали название «Царская водка») образует комплексное соединение растворимое в воде — золотохлористоводородную кислоту:

Au + HNO3 + 4HCl = H[AuCl4] + NO + 2H2O

Применение. Золото — ювелирный металл. Слитки золота обеспечивают бумажные деньги. Используется также в зубопротезной практике, для крашения фарфора и стекла, тиснения на книгах, изготовления электрических контактов в микроэлектронике, получения соединений золота и золочения. Золочение — покрытие изделий тонким слоем золота; осуществляется накатыванием фольги или гальваническим методом с использованием электролита, содержащего дицианоаурат(I)калия и цианид калия, а также золочение можно осуществить с помощью автокаталитической химической реакции. Проводятся эксперименты и разработка безопасной технологии Химическое золочение, которая позволит при н.у., химическим способом наносить тонкий декоративный слой золота на подготовленную поверхность пластиковых, керамических, стеклянных и др. изделий.

В последнее время, с развитием нанотехнологий, золото используется в качестве катализатора различных химических процессов, например: Каталитическое окисление спиртов и альдегидов в сложные эфиры. В ювелирном деле чаще всего используются сплавы золота с серебром и медью, что обусловлено мягкостью чистого золота и малой износостойкостью. Проба золота оценивается, исходя из 1000 единиц — чистое, «червоное» золото, что отвечает 24 каратам (карат — ранее применяемая мера массы драгоценных камней); так, проба золота 333 соответствует 8 каратам.

Соединения золота

Соединения золота (III) значительно более устойчивы, чем соединения золота (I). Золото образует два оксида — оксид золота (I), или закись золота, Au2O и оксид золота (III) или окись золота, Au2O3. В водном растворе, золото всегда образует комплексные соединения. Из золотосодержащий растворов действием хлорида олова (II) можно получить интенсивно окрашенный в темно-красный цвет коллоидный раствор золота (кассиев золотой пурпур); подобную окраску принимают соединения золота при нагревании.

Дицианоаурат(I) калия K[Au(CN)2] — бесцветные кристаллы с гексагoнальной кристаллической решеткой. Плотность 3,45 г./см3. Устойчив на воздухе, при нагревании разлагается. Растворимость в воде — 14,3 г в 100 г при 20*С, малорастворим в этаноле, ацетоне и эфире. Из водного раствора кристаллизуется при добавлении спирта или кислот. При действии Zn, Al, Mn, Mg, и других восстановителей на водные растворы дицианоаурат(I) калия выделяется Аu, при нагревании с разбавленными кислотами образуется AuCN. Дицианоаурат(I) калия легко окисляется галогенами с образованием K[Au(CN)2X2], где Х — Сl, Вr или I. Получают дицианоаурат(I) калия взаимодействием Au с раствором KCN в присутствии Н2О2 или О2, реакцией AuCN с раствором KCN, анодным растворением Аu в растворе KCN. Более подробно, о том, как синтезировать дицианоаурат(I) калия чинайте на нашем химическом форуме. Дицианоаурат(I) калия — промежуточный продукт при извлечении золота из руд. Его применяют при электролитическом золочении металлических поверхностей и элементов микроэлектронных схем, как реагент для анализа белков и ферментов. Токсичен. Вызывает дерматит и стоматит, повреждает почки и головной мозг (!).

Тетрахлораурат(III) водорода (тетрахлорозолотая, или золотохлористоводородная кислота) H[AuCl4] — светло-желтые, гигроскопичные кристаллы в форме игл, соответствующие химическому составу H[AuCl4]*4H2O. Если осторожно нагревать тетрахлорзолотую кислоту, то она разлагается с выделением HCl и красновато коричневых кристаллов хлорида золота (III) AuCl3. В растворе хлорид золота (III) имеет желтую окраску (см. фото). Самая известная соль этой кислоты — «Золотая соль» тетрахлораурат(III) натрия Na[AuCl4], представляющий собой желтые кристаллы. Щелочи осаждают из растворов тетрахлорзолотой кислоты бурый гидроксид золота (III) Au(OH)3, называемый также «Золотая кислотой«, т.к. это вещество обладает слабо выраженными кислотными свойствами и образует соли. При 100*С золотая кислота теряет воду, превращаясь в бурый оксид золота (III) Au2O3.

Резинат золота — продукт реакции между серосодержащим эфирно-хвойным маслом («Серный бальзам«) и тетрахлораурат(III) калия; этот продукт, нанесенный на фарфоровые изделия, после обжига оставляет слой золота с отличной адгезией к фарфору.

Хлорид золота (I) AuCl — белое, малорастворимое в воде вещество. Получают при нагревании хлорида золота (III) в струе диоксида углерода до 180*С. Из растворов хлорида золота (I) щелочи осаждают фиолетовый оксид золота (I) Au2O.

Все соединения золота легко разлагаются при нагревании с выделением металлического золота. Многие органические вещества (альдегиды, некоторые спирты, глюкоза), а также ионы металлов в низших степенях окисленности (Sn2+, Fe2+ и др.) восстанавливают золото до металла из растворов его солей.

Более подробную информацию о золоте и его соединениях можно прочитать в книге Аффинаж золота, серебра и металлов платиновой группы. О.Е. Звягинцев, 1945 г.

Получение золота

Из россыпных месторождений золото можно извлечь методом флотации (осаждение), основанным на большой разности плотностей золота и пустой породы. Золото почти в 20 раз тяжелее воды и примерно в 8 раз тяжелее песка,

поэтому крупинки золота можно струей воды отделить от песка или от измельченной пустой породы. Старинный способ промывки с помощью бараньих шкур, на которых отлагались золотые крупинки, отражен в древнегреческом мифе о золотом руне. Самородки и россыпи золота часто находили по течению рек, которые тысячелетиями размывали золотоносные породы. В древние времена золото добывали только из россыпей. И сейчас там, где они остались, золотоносный песок вычерпывают со дна рек и озер и обогащают на драгах – огромных сооружениях размером с многоэтажный дом, способных перерабатывать миллионы тонн золотоносной породы в год.

Однако, этот способ, применявшийся уже в глубокой древности, сопряжен с большими потерями. Он уступил место амальгамации (известной уже в 1 веке до н. э. и применявшейся в Америке начиная с XVI века) и цианированию, получившему широкое распространение в Америке, Африке и Австралии в 1890-х годах.

Старый (так называемый ртутный) способ извлечения золота из руды – амальгамирование основан на том, что ртуть хорошо смачивает золото – как вода смачивает стекло. Тонко размолотую золотоносную породу встряхивали в бочках, на дне которых находилась ртуть. При этом частички золота прилипали к жидкому металлу, смачиваясь ртутью со всех сторон. Поскольку при этом цвет золотых частиц исчезает, может показаться, что золото «растворилось». Затем ртуть отделяли от пустой породы и сильно нагревали. Летучая ртуть отгонялась, а золото оставалось в неизменном виде. Недостатки этого метода – высокая ядовитость ртути и неполнота выделения золота: самые мелкие его частицы смачиваются ртутью плохо.

В конце XIX- начале XX века основным источником золота становятся коренные месторождения. Золотоносную породу подвергают дроблению и выщелачиванию цианидом натрия, при котором даже самые мелкие крупинки переводят в водорастворимые цианистые соединения. Затем из водного раствора золото извлекают с помощью цинкового порошка: 2Na[Au(CN)2] + Zn → Na[Zn(CN)4] + 2Au. Выщелачивание позволяет извлекать остатки золота из отвалов заброшенных разработок, фактически превращая их в новое месторождение. Перспективен и метод подземного выщелачивания: раствор цианида закачивают в скважины, он по трещинам проникает внутрь породы, где растворяет золото, после чего раствор выкачивают через другие скважины.

Другой способ очистки золота электролизом, был предложен Э. Вольвиллом в 1896 году. Аноды, отлитые из нечистого золото, подвешивают в ванне, содержащей солянокислый раствор АuCl3, катодом служит лист чистого золота. При этом при прохождении тока примеси выпадают в осадок (анодный ил, шлам), а на катоде отлагается золото чистотой не менее 99,99%.

Катализируемые золотом реакции [ править ]

Хотя золото не имеет коммерческого значения, оно катализирует многие органические превращения, обычно образование углерод-углеродной связи из Au (I) и образование связи CX (X = O, N) из состояния Au (III) из-за более жесткой льюисовской кислотности этого иона. . В течение последнего десятилетия несколько исследований продемонстрировали, что золото может эффективно катализировать реакции кросс-сочетания CC и C-гетероатомов, которые проходят через цикл Au (I) / Au (III). [29] Хун С. Шен суммировал гомогенные реакции с образованием циклических соединений на 4 основные категории: [30]

  • нуклеофильное присоединение гетероатома к ненасыщенным связям CC, особенно с образованием небольших гетероциклов (фураны, пирролы, тиофены)
  • Гидроарилирование: в основном реакция Фриделя-Крафтса с использованием комплексов металл-алкин. Пример реакции мезитилена с фенилацетиленом : [31]
  • Циклизация енина, в частности циклоизомеризация , одним из первых примеров является циклоизомеризация 5-экзо-диг 1,6 енина: [32]
  • реакции циклоприсоединения с ранним примером циклоприсоединения оксида нитрила к алкину. [33]

Другими реакциями являются использование золота в активации связи C – H [34] и альдольные реакции. Золото также катализирует реакции сочетания . [35]

Ограничения [ править ]

В то время как катализируемая золотом гидрофункционализация алкинов, алленов и аллильных спиртов [36] легко происходит в сравнительно мягких условиях, неактивированный алкен в большинстве случаев остается плохим субстратом [37], в значительной степени из-за устойчивости промежуточных комплексов алкилзолота (I). до протодеурации. [38] Развитие межмолекулярных превращений, катализируемых золотом, также отстает от развития внутримолекулярных. [39]

Оксид трехвалентного золота

Другое бинарное соединение золота состоит из двух атомов Au и трех атомов кислорода, что можно записать: Au2O3. Представляет собой твердое коричневое вещество, которое легко поддается распаду даже под воздействием солнечного света. Оксид золота (ІІІ) не может быть растворен в воде, однако хорошо растворяется в гидроксиде калия, образуя сложное комплексное соединение. Получают путем просушки гидроксида золота над парами оксида фосфора с дальнейшим нагреванием смеси до 140 градусов. Соблюдение правильного режима температур критически важно, ведь если разогреть реагенты на дополнительных 20 градусов, то вместо обезвоживания гидроокиси и кристаллизации оксида произойдет разложение выходящей смеси.

Исходя из химических свойств вещества, его также называют золотой кислотой, ведь Au2O3 может образовывать соли, называемые ауратами. Благодаря своим свойствам оксид золота (ІІІ) нашел свое применение в технике. Именно из него делали «золотые дорожки» на микроэлектронных платах, нанося на поверхность слой вещества, а затем воздействуя на него лазером, чтобы получить тонкую полоску из благородного металла.

Существует еще одно вещество, которое может быть отнесено к оксидам золота. Это соединение, в котором присутствуют атомы с валентностями I и III одновременно. По сути, это смесь обоих оксидов, вещество существует в виде коричневого порошка, который сильно впитывает влагу.

Общим для всех оксидов золота является то, что они почти не находят применения в технике или любой другой отрасли промышленности. Причина этого, по всей видимости, в том, что данные соединения неустойчивы в условиях внешней среды и легко разрушаются, переходя в другие вещества. А также не стоит забывать о высокой цене самого золота, не говоря уже о дополнительных затратах на реакции, необходимые для того, чтобы заставить его окисляться. Поэтому сейчас с оксидами золота дело имеют преимущественно химики-теоретики, проводя с ними множество экспериментов. Но вполне может быть, что скоро они увенчаются успехом, и материалы на основе оксида золота помогут сделать очередной технологический прорыв.

Источник

Оксид золота(I,III)

Оксид золота(I,III)
Общие
Систематическое наименованиеОксид золота(I,III)
Традиционные названияОкисел золота; аурат золота
Химическая формулаAu[AuO2]
Рациональная формулаAuO
Физические свойства
Состояние (ст. усл.)коричневый порошок
Молярная масса425,93 г/моль

Оксид золота(I,III)

— неорганическое соединение, окисел металла золота с формулой Au[AuO2], может рассматриваться как соль аурат золота или смешанный окисел Au2O•Au2O3, коричневый порошок.

Получение

Получается из гидроксида золота(III) Au2O3x

H2O обезвоживанием при нагревании. Полная потеря воды наступает при температуре около 200 о С. [1] . Полученный таким образом оксид золота(III) аморфен. Имеет красный или красно-бурый цвет. Примесь бурого, как и в случае гидроксида золота(III), обычно связывают с присутствием небольшого количества золота(0). Монокристаллы Au2O3 были получены из аморфного оксида гидротермальным синтезом в кварцевой ампуле, заполненной на треть смесью хлорной кислоты HClO4 и перхлората щелочного металла (температура синтеза 235—275 о С, давление до 30 МРа). Полученные монокристаллы имели рубиново-красный цвет [1] .

приложений

Окраска очков

Одним из наиболее выдающихся применений является придание красноватых цветов некоторым материалам, таким как стекла, в дополнение к приданию определенных свойств, присущих атомам золота..

Синтез ауратов и молниеносного золота

Кроме того, Au2О3 реагирует с аммиаком с образованием молниеносного соединения золота, Au2О3(NH3)4. Его название происходит от того факта, что он очень взрывоопасен.

Обработка самосборных монослоев

Что касается золота и его оксида, некоторые соединения, такие как диалкилдисульфиды, RSSR, не адсорбируются одинаково. Когда происходит эта адсорбция, спонтанно образуется связь Au-S, где атом серы проявляет и определяет химические характеристики указанной поверхности в зависимости от функциональной группы, с которой она связана..

RSSR не может адсорбироваться на Au2О3, но на металлическом золоте. Поэтому, если поверхность золота и его степень окисления модифицируются, а также размер частиц или слоев Au2О3, может быть разработана более неоднородная поверхность.

Это поверхность ау2О3-AuSR взаимодействует с оксидами металлов некоторых электронных устройств, тем самым создавая в будущем более умные поверхности.

Источник

Золота оксид (І)

Является бинарным, то есть состоящим всего из двух видов атомов, соединением с химической формулой Au2O. Представляет собой порошок серо-фиолетового цвета или же синий гидрозоль. В воде он не растворяется, но пребывание во влажной среде ведет к превращению в другое вещество. Если же нагреть окись золота примерно до 200 градусов Цельсия, то произойдет разложение на составляющие его элементы. Низкая термическая резистентность обусловлена тем, что ионы золота обладают окислительной способностью и сильным поляризующим действиям.

Получить оксид одновалентного золота сложно, ведь золото окисляется очень плохо. Учитывая тот факт, что золото — это очень инертный элемент, простая реакция с кислородом даже при высокой температуре не приведет к образованию оксида, как это происходит с большинством других легко окисляющихся металлов. Даже пропуская электрический ток через электрод из золота, все равно не добиться получения на его поверхности пленки из оксида. Для того чтобы синтезировать оксид золота, используют двухэтапную методику. Сначала к холодному водному раствору щелочи добавляют хлорид золота и затем полученную смесь постепенно нагревают.

Что же касается химических свойств данного вещества, то оно способно реагировать с концентрированным гидроксидом аммония. При этом образуется сложное неорганическое соединение в виде черного осадка, который обладает способностью взрываться при ударах.

Оксиды и их свойства

Оксид золота в природе не образуется, элементы, с которыми соединяется этот металл, можно пересчитать по пальцам. Их крайне мало. Если говорить о чистом золоте, то кислород его не разрушает, то же самое можно сказать о воде и большом количестве других реагентов.


Химический элемент золото

Золото окисляется только при взаимодействии со следующими элементами:

Если говорить о ртути, то при взаимодействии элементов образуется сплав, который химики называют амальгамой.

Смесь азотной и соляной кислот в пропорции 1 к 3 называют царской водкой, при погружении в эту смесь металл начинает растворяться. При повышении температуры реакция ускоряется.

Селеновая кислота в высокой концентрации способна окислить золота, подобная технология применяется только в промышленности, для извлечения благородного элемента из породы.

Хлор и бром могут взаимодействовать с Au, присутствие хлора в реакции ускоряет процесс. По этой причине не рекомендуется надевать золотые украшения во время уборки, им может быть нанесен вред.

Оксид золота имеет несколько разновидностей, также существует и гидроксид, который является смесью золота, кислорода и водорода. Если говорить проще, это смесь воды и благородного металла. Но поскольку металл инертен, получить такую смесь не так просто.

Чистое золото окисляться может только при определенных обстоятельствах. Для этого необходимо поддержание температурного режима и соблюдение условий.

Оксид золота бывает всего двух разновидностей, определить, о каком именно химическом элементе идет речь, можно при помощи обозначения. Химики дополняют название веществ римскими цифрами I и III.

Элемент представляет собой неорганическое соединение, окись металла и кислорода, рассматривается как соль аурат или окисел смешанного типа. Представляет собой порошок коричневого цвета.

Окись золота можно получить несколькими способами, но в реакции обязательно должен участвовать кислород.

Соединение воды и Au под номером I получают путем нагревания элемента с аналогичным названием, но под номером III. А для получения оксида понадобится гидроксид, то есть соединение металла с водой.


Химическое соединение Au2O3

Реакция проходит в ампуле из кварца, которая на одну треть должна быть заполнена хлорной кислотой, при температуре в 200 градусов. Из соединения путем повышения температуры испаряют воду, в результате получают порошок красного или бурого оттенка. Бурый оттенок свидетельствует или о низком качестве металла, или его небольшом содержании.

При повышении температуры можно получить кристаллы, которые будут иметь рубиновый оттенок. Показатели должны быть примерно 240–270 градусов.

Можно характеризовать соединение под номером III следующими свойствами:

Кристаллы соединяются друг с другом по типу мостика, то есть одна молекула цепляет две, две молекулы цепляют три и таким образом — по восходящей.

Можно заметить, что оксид имеет определенное сходство с металлом, например, элемент так же ускоренно растворяется в соляной и азотной кислотах.

Что может элемент под номером I и какими обладает свойствами:

Получают элемент при нагревании, для проведения реакции понадобятся гидроксид калия и хлорид золота.

Соединение быстро возвращается в первоначальное состояние, по этой причине элемент рассматривают как порошок, который может иметь фиолетовый оттенок. При повышении температуры соединение разлагается.

Если добавить в соединение гидроксид аммония, или, говоря проще, нашатырь, то в процессе реакции образуется осадок черного цвета. При силовом воздействии (от удара) соединение может взорваться.

Соединение с химической формулой 3Au2O·4NH3, не отличается устойчивостью, распадается в горячей воде, не образует осадка.

Где можно провести процедуру

  1. Аффинированием золота занимаются специализированные предприятия. В России это АО «Уралэлектромедь», Колымский аффинажный и ещё несколько организаций. Основной способ очистки металла от примесей в промышленных масштабах — электролитический (разделение расплава на составные части посредством пропускания через него электрического тока).
  2. Существуют лаборатории, располагающие нужным оборудованием и вытяжкой.
  3. Некоторые техники аффинажа можно воспроизвести в домашних условиях, если позаботиться о материалах и инструментах.

свойства

Внешний вид

Это красновато-коричневое твердое вещество.

Молекулярная масса

плотность

Точка плавления

Тает и разлагается при 160ºC. Поэтому ему не хватает температуры кипения, поэтому этот оксид никогда не достигает температуры кипения.

стабильность

Au2О3 оно термодинамически нестабильно, потому что, как упоминалось в начале, золото не склонно окисляться при нормальных температурных условиях. Так что его легко уменьшить, чтобы снова стать благородным золотом.

Чем выше температура, тем быстрее протекает реакция, известная как термическое разложение. Итак, Au2О3 при 160 ° C он разлагается, образуя металлическое золото и выделяя молекулярный кислород:

Очень похожая реакция может происходить с другими соединениями, которые способствуют указанному восстановлению. Почему сокращение? Потому что золото возвращается, чтобы получить электроны, которые кислород забрал у него; это то же самое, что сказать, что он теряет связь с кислородом.

растворимость

Это твердое вещество, нерастворимое в воде. Однако он растворим в соляной кислоте и азотной кислоте из-за образования хлоридов и нитратов золота.

Способы аффинажа золота

Методы очистки благородных металлов делятся на:

  • химические (построенные на взаимодействии веществ, бывают сухими и мокрыми);
  • электрохимические (электролиз).

Сухие

Говоря о сухом методе очистки золота, имеют в виду метод Миллера. Он применяется только в промышленных условиях из-за токсичности и коррозионной активности хлора и его соединений, которые в избытке выделяются при проведении реакции.

Суть способа: через измельчённую массу обрабатываемого вещества пропускается газообразный хлор. Соединения неблагородных металлов с хлором летучи и удаляются из сплава, повышая пробу золота.

Метод Миллера эффективен за счёт того, что благородные металлы реагируют с хлором в последнюю очередь (первыми выводятся цинк и железо, последними — золото и платина). Его преимущества:

  • он недорог;
  • не требует больших площадей для размещения оборудования;
  • недолог — занимает несколько часов;
  • удаляет почти всю лигатуру, повышая содержание золота в сплаве до 99,5–99,9 %.

Процесс аффинажа происходит в тигле (огнеупорной плавильной ёмкости), куда через трубу поступает хлор. Лишние компоненты удаляются из смеси, а хлорид серебра поднимается на поверхность сплава — это позволяет дополнительно отделить друг от друга благородные металлы. Метод Миллера помогает получить золото и из многокомпонентного сплава, и из сплава с серебром.

Мокрые

Отделять благородный металл от лигатуры удобно растворением либо самого металла, либо примесей.

Самый популярный метод аффинажа заключается во взаимодействии лома с царской водкой (смесью азотной и соляной кислот — одним из немногих составов, растворяющих золото). Раствор подвергается выпариванию, а золото осаждается с помощью железного купороса (он также подходит для восстановления из хлорида), щавелевой кислоты, пиросульфита натрия или гидразина.

Если реакция восстановления проведена правильно, потери чистого вещества на выходе будут минимальными, а проба достигнет 999.

Существует способ растворения золота раствором Люголя — соединением калия с йодом.

Применяется также квартование (от лат. quarta — четвёртая) — сплавление золота в пропорции 1:3 с другим металлом (латунью, цинком, медью), который впоследствии растворяется в азотной кислоте. Примеси не растворятся качественно, если их содержание менее ¾ объёма, поэтому полуфабрикат квартуется. Теоретически вы можете попробовать сделать это дома, но учитывайте, что при растворении выделяется очень ядовитый оксид азота.

Если у вас есть золото в виде раствора, его легко аффинировать порошком хлорида олова. Через сутки после начала процесса золото осядет на дно посуды, в которой вы оставили его. Способ с хлорным оловом хорош тем, что при его использовании организм оператора не подвергается опасности, как при работе с летучими хлоридами или кислотой.

Электролитический

Электролиз предполагает выделение составных компонентов сплава на электродах в результате прохождения электрического тока через электролит. При аффинаже анодом (электродом с положительным потенциалом) выступает золотосодержащий сплав, а катодом (электродом с отрицательным потенциалом) — тонкая прокатная золотая (999) жесть. Электролит — раствор хлорного золота и кислоты, которая растворяет анод.

Исходная проба анода — минимум 900. Процесс происходит в небольших фарфоровых ваннах (

25 л), установленных на водяные бани для сохранения температуры 50–60 °С. Частицы золота оседают слоями на катоде. После окончания процесса анодный шлам отправляют на дальнейшую обработку: отделяют серебро и переплавляют в аноды для серебряного электролиза.

Какие способы аффинирования можно провести в домашних условиях

Конечно, провести опыт с хлором дома вы не сможете. Но можно попробовать добыть золото из лома или компьютерных отходов с помощью хлорного олова и кислот. Умелые алхимики могут воспользоваться электролитическим методом. Но не забывайте о технике безопасности!

Процесс аффинажа золота в домашних условиях

Если решено провести опыт дома, нужно подготовиться. В первую очередь — подумать о технике безопасности: понадобятся маска для защиты от испарений, перчатки и осторожность. Экспериментировать можно только в отлично проветриваемом помещении, куда не имеют доступа дети и животные.

Необходимое сырье, приспособления и реактивы

Представим, что мы смогли достать всё необходимое для работы и решили попытаться. Займёмся квартованием: доведём пробу золота до 200–250, разбавив исходный материал медью, а потом растворим лигатуру. Цинк растворился бы быстрее меди, но сплав с ним очень хрупкий, а медь проще контролировать новичку.

Для аффинажа нам понадобятся:

  • золотой лом, пробу которого будем повышать;
  • два тигля (можно купить или самостоятельно вылепить из шамотной глины и обжечь);
  • медь 999 пробы (удобно купить гранулированную из расчёта N×3–m, где N — примерная масса золота в нашем ломе, а m — примерная масса лигатуры);
  • азотная кислота (тоже продаётся, её количество должно в 10 раз превышать общее количество металла);
  • соляная кислота;
  • бура (антисептик тетраборат натрия, есть в аптеке);
  • горелка для плавления;
  • деревянная (берёзовая, осиновая) палочка для размешивания расплава (некоторые ювелиры рекомендуют брать графитовые карандашные стержни);
  • длинный пинцет;
  • марля;
  • колпак с отверстием для накрывания тигля;
  • электроплитка;
  • стеклянная огнеупорная колба для кипячения.

Подготовка

Допустим, у нас есть 20 г ювелирного золота 585-ой пробы, то есть сплавленные 11,7 г чистого металла и 8,3 г примесей. Для квартования потребуется медь в количестве 26,8 г (11,7×3–8,3).

  1. Измельчаем лом — например, с помощью кусачек.
  2. Просушиваем и прокаливаем тигли, иначе есть риск, что они лопнут.
  3. В исходное золото пинцетом добавляем медные гранулы и размешиваем до равномерного расплава, не прекращая нагревать. Каждый новый кусочек берём после того, как расплавлен предыдущий.
  4. Массу раскатываем или гранулируем, вылив в воду тонкой струйкой (сплав с цинком можно измельчить даже в ступке).

Процесс аффинирования

Важно: эта часть процесса проводится только на свежем воздухе, в противном случае она опасна для жизни! Идеальный вариант — дачный участок, на который дотягивается удлинитель для подключения электроплитки.

Добавляем в колбу с измельчённым металлом 60–70 мл азотной кислоты По мере утихания реакции добавляем ещё 40–50 мл, чтобы взаимодействие возобновилось (общий объём кислоты не должен превышать 200 мл). Процедуру повторяем 2–3 раза, после чего доводим колбу до кипения.

Осадок промываем чистой водой, добавляя её в колбу, пока смесь не станет прозрачной, и аккуратно сливая. После с небольшим количеством воды, обильно посыпав бурой, помещаем золото в чистый тигель (удобно для этого воспользоваться марлей — получится «узелок» из золотых хлопьев).

Тигель с завёрнутым золотом, посыпанным бурой, прикрыв колпаком, держим на огне, пока марля не истлеет. Убедившись, что смесь буры и золота стала более или менее однородной, переходим к плавлению. Расплавленный металл снова посыпаем бурой.

Процесс аффинажа можно считать завершённым, когда начинающее застывать золото не мутнеет, а остаётся блестящим. Пока этого не происходит, продолжаем плавить его и посыпать бурой.

Чистое золото плавится очень красиво. Как плавят его профессиональные ювелиры, можно увидеть на видео:

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]