какую кристаллическую решетку имеет карбид кремния

Карбид кремния (карборунд, SiC) – синтетический материал, соответствующий по составу и свойствам минералу муассанит. Является неорганическим бинарным соединением кремния с углеродом.

Представляет собой бесцветные кристаллы с бриллиантовым блеском в чистом виде, в форме технического продукта может приобретать различную окраску – зеленую, черную, желтую или серую (из-за примесей железа). Внешне напоминает уголь антрацит, но, в отличие от него, переливается всеми цветами радуги.

Природный минерал муассанит содержится в очень малых количествах в месторождениях кимберлита и корунда, а также в некоторых типах метеоритов. Впервые он был обнаружен в 1893 году А. Муассаном, в честь которого впоследствии был назван. Муассанит широко распространен в космосе в пылевых облаках вокруг звезд, богатых углеродом.

Нахождение в природе

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.
Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде.

Современность

В конце XX был изготовлен первый кристалл карборунда, до этого он был известен только в виде порошка. Как только появилась возможность синтезировать кристалл — его синтезировали. Результат оказался поразительным. По многим показателям карборунд превосходил алмаз.

  • степень светопреломления на четверть выше;
  • дисперсия — в два с половиной.

То есть он лучше блестит и даёт больше радужных бликов. Казалось бы — вот она, удача. Его действительно признали лучшей имитацией алмаза. Но в массовым он так и не стал. Делать ювелирные изделия с карборудном с точки зрения коммерции бессмысленно.

Производство украшений из камня слишком сложное и затратное дело. Крупный образец будет стоить порядка 500 долларов за карат. Сомнительно, что найдутся любители покупать искусственные камни за такие деньги. Даже если они высокотехнологичные и сверхблестящие. Сейчас кристаллы карбида кремния делает только одна американская компания, а в продаже он встречается реже, чем бриллиант.

Теоретически камень должен быть красивым: блестящий, сияющий, с радужной игрой света на гранях.

Но ценители камня его не очень ценят. На то есть несколько причин:

  • яркие переливы света непривычны глазу и скорее раздражают, создают впечатление безвкусности и кичливости;
  • прозрачных и чистых по цвету камней нет. Все они имеют пыльный зеленоватый оттенок. Химики пока с этим ничего поделать не могут;
  • лучики света, которые отбрасывает бриллиант плотные, яркие, с насыщенными оттенка. Карборунд даёт более прозрачные и тёмные отблески.

Как видим, искусственному муассаниту не удалось превзойти алмаз и вытеснить его с ювелирных прилавков.

Непрозрачные недорогие образцы предприимчивые итальянцы продают как куски лавы Везувия.

Однако у карборунда есть ряд преимуществ:

  • он не оставляет на себе жировых отпечатков. Если долго щупать бриллиант, он покроется жировой плёнкой и блестеть перестанет. Карборунд к этому невосприимчив. сколько его не трогай — он продолжит блестеть;
  • поскольку карборунд выращен искусственно, он лишён дефектов. Его ограняют в идеальные, математически точно выверенные кристаллы. К тому же на материале можно не экономить. С бриллиантами это не всегда проходит. Иногда хочет сохранить вес камня и умышленно нарушает пропорции, иногда обходит дефекты. Браком это не считаются. Такие бриллианты хоть и стоят ниже, но на рынок поступают;
  • в экстремальных температурах (около 1000 градусов Цельсия) алмаз горит, а карборунд нет. Вы можете кинуть платиновое кольцо в угольную печь и оно не пострадает.

Кроме этого он прочный, лишь незначительно уступает алмазу. К тому же он инертный — не вступает в реакцию с другими веществами (кроме плавиковой, азотной и ортофосфорной кислот), отличается высокой теплопроводностью, плотностью электрического тока и электрическим напряжением, имеет малый коэффициент теплового расширения и не имеет фазовых переходов, разрушающих кристалл.

Сейчас карборунд производят методом термического разложения полиметилсилана при низких температурах в присутствии инертного газа. Полученный материал применяется во многих сферах жизни.

Применяется в качестве:

  • абразив для шлифования и напыление для пил;
  • сырьё для режущих инструментов;
  • полупроводник в электротехнической промышленности;
  • катализатор в химической промышленности;
  • подшипники и элементы оборудования в плавильных печах, поскольку он выдерживает нагрузку до 1700 градусов Цельсия;
  • сырьё для производства бронежилетов;
  • основа для сверхмощных светодиодов;
  • сырьё для изготовления высококачественных дисковых тормозов;
  • сырьё для создания зеркальных деталей в оптических системах.

Это далеко не всё. Камень используется в ядерной энергетике, строительстве, органическом синтезе.

Стоимость камня

Карборунд имеет относительно невысокую стоимость, поэтому по карману каждому. Вот его примерные расценки (измеряются в российских рублях):

  • Необработанные самородки (кристаллы) — можно приобрести в пределах 1000 руб.
  • В качестве ювелирных украшений (подвески, кольца, колье, браслеты и др.) — 4000-15000.


Серьги из камня

Структура и свойства

Известно примерно 250 кристаллических форм карбида кремния. Полиморфизм SiC характеризуется большим количеством схожих кристаллических структур, называемых политипами. Они являются вариациями одного и того же химического соединения, которые идентичны в двух измерениях, но отличаются в третьем. Таким образом, их можно рассматривать как слои, сложенные в стопку в определённой последовательности.

Альфа-карбид кремния (α-SiC) является наиболее часто встречающимся полиморфом. Эта модификация образуется при температуре свыше 1700 °C и имеет гексагональную решётку, кристаллическая структура типа вюрцита.

Совместимость со знаками зодиака

(«+++» — камень подходит идеально, «+» — можно носить, «-» — категорически противопоказан):

Знак зодиакаСовместимость
Овен+++
Телец+
Близнецы+++
Рак+
Лев+++
Дева+
Весы+++
Скорпион+
Стрелец+++
Козерог+
Водолей+++
Рыбы+

Минерал подходит всем знакам зодиака без исключения. Но наибольшую пользу он принесёт людям стихии Огня (Львы, Стрельцы, Овны) и Воздуха (Водолеи, Близнецы, Весы).

Вам подходит этот камень?

Из чего получают карборунд

Главная проблема при создании алмазов – длительность и сложность процесса. В природных условиях камень образуется тысячи лет под колоссальным давлением от 45000 до 60000 атмосфер и при температуре свыше 900 градусов, поэтому повторить весь процесс в точности с природным практически невозможно.

Первое документальное описание попытки синтезировать бриллианты датируется 1823 годом, когда наш соотечественник Василий Каразин в результате опытов с нагреванием и перегонкой сухой древесины получил неизвестные кристаллы.


Однако официально считается, что впервые камень, с наиболее похожими на бриллианты свойствами, открыл французский исследователь и нобелевский лауреат Анри Муассан

Однако официально считается, что впервые камень, с наиболее похожими на бриллианты свойствами, открыл французский исследователь и нобелевский лауреат Анри Муассан. В 1905 году полученный им кристалл карбида кремния, в честь создателя, начал именоваться муассанит. Карбид кремния встречается в природе и за свое космическое происхождение часто именуется звездной пылью, но его естественный размер очень мал и имеет специфическую окраску.

Не оставляя желание создать идеальные бриллианты в лабораторных условиях ученые научились синтезировать более крупные и чистые камни. Искусственно выращенный муассанит нередко называется карбокорунд.

Большой вклад в создание искусственных бриллиантов внесли российские и советские ученые. Основную массу синтетических камней производят по разработанным ими технологиям. Сегодня муассанит получают нескольким способами, однако наиболее чистые и качественные кристаллы карбокорунда рождаются путем многочасового нагревания при температуре 2 400 ºС кристаллического карбида кремния с участием металлического катализатора (железа).

В промышленных масштабах искусственные алмазы, имеющие крупнозернистую структуру, начали производить с середины прошлого века.

Кроме описанного выше термобарического метода, при их создании используется способ осаждения кристаллов из плазмы газообразного углерода под воздействием электрической дуги и редкая детонационная технология, использующая энергию взрывной волны.

Для выращивания бриллиантов в лабораторных условиях используют вещества с высокой концентрацией углерода: очищенную сажу или уголь, графит и т.д. В зависимости от того каким образом был получены такие бриллианты, существует деление на НРНТ-и CVD-алмазы.

Физико-химические свойства камня

Химическая формула: SiC

Состояние: кристаллы, друзы или кристаллические порошки от прозрачного белого, жёлтого, зелёного или тёмно-синего до чёрного цветов, в зависимости от чистоты, дисперсности, аллотропных и политипных модификаций.

Температура плавления: 2830°C

Карбид кремния

:

  • Плотность 3,05 г/см³
  • Состав 93 % карбида кремния
  • Предел прочности на изгиб 320…350 МПа
  • Предел прочности на сжатие 2300 МПа
  • Модуль упругости 380 ГПа
  • Твердость 87…92 HRC
  • Трещиностойкость в пределах 3.5 — 4.5 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 140—200 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 3,5…4,0 К−1⋅10−6
  • Вязкость разрушения 3,5 МПа·м1/2

Также читайте: 12 самых популярных зелёных минералов
Самосвязанный карбид кремния

:

  • Плотность 3,1 г/см³
  • Состав 99 % карбида кремния
  • Предел прочности на изгиб 350—450 МПа
  • Предел прочности на сжатие 2500 МПа
  • Модуль упругости 390—420 ГПа
  • Твердость 90…95 HRC
  • Трещиностойкость в пределах 4 — 5 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 80 — 130 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 2,8…4 К−1⋅10−6
  • Вязкость разрушения 5 МПа·м1/2

ВК6ОМ

:

  • Плотность 14,8 г/см³
  • Состав Карбид вольфрама
  • Предел прочности на изгиб 1700…1900 МПа
  • Предел прочности на сжатие 3500 МПа
  • Модуль упругости 550 ГПа
  • Твердость 90 HRA
  • Трещиностойкость в пределах 8-25 МПа·м1/2,
  • Коэффициент теплопроводности при 100 °C, 75…85 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 4,5 К−1⋅10−6
  • Вязкость разрушения 10…15 МПа·м1/2

Силицированный графит СГ-Т

:

  • Плотность 2,6 г/см³
  • Состав 50 % карбида кремния
  • Предел прочности на изгиб 90…110 МПа
  • Предел прочности на сжатие 300…320 МПа
  • Модуль упругости 95 ГПа
  • Твердость 50…70 HRC
  • Трещиностойкость в пределах 2-3 МПа·м1/2,
  • Коэффициент теплопроводности при 10 °C, 100…115 Вт/(м·К)
  • Коэфф. теплового расширения при 20-1000 °C, 4,6 К−1⋅10−6
  • Вязкость разрушения 3…4 МПа·м1/2

Биологическая роль

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной.

Он также используется для создания клеточных стенок некоторых организмов и является центром реактивности дюжины или около того ферментов, ответственных за «обработку» диатомового кремнезема y некоторых ракообразных.

Кремний встречается во многих растениях, которые необходимы для правильного развития, но не было доказано, что это необходимо для развития всех видов. Обычно его присутствие повышает устойчивость к вредителям, особенно грибам, препятствует их проникновению в ткани растений, насыщенных кремнеземом. Точно так же в случае животных необходимость в кремнии была продемонстрирована для шестилучевых губок, но, хотя это происходит в телах всех животных, это, как правило, не оказывается необходимым для них. У позвоночных это происходит в больших количествах в волосах и перьях (например, овечья шерсть содержит 0,02—0,08 % SiO2). Мышечная ткань человека содержит (1—2)⋅10−2 % кремния, костная ткань — 17⋅10−4 %, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

В организме человека

Доказано, что кремний имеет важное значение для здоровья человека, в частности, для ногтей, волос, костей и кожи. Исследования показывают, что женщины в пременопаузе с более высоким потреблением биодоступного кремния имеют более высокую плотность костной ткани, а также, что добавки кремния может увеличить объем и плотность кости у пациентов с остеопорозом

Организм человека нуждается в 20—30 мг кремния в день. Беременным женщинам, людям после операций на костях и пожилым людям требуется более высокая доза, так как количество этого элемента в органах уменьшается с возрастом. Это происходит главным образом в соединительной ткани, из которой строятся сухожилия, слизистые оболочки, стенки кровеносных сосудов, клапаны сердца, кожа и костно-суставная система. Кремний удаляет токсичные вещества из клеток, предпочтительно воздействует на капилляры, герметизирует их, повышает прочность костной ткани, укрепляет защитные силы организма от инфекций, предотвращает преждевременное старение. Снимает раздражения и воспаления кожи, улучшая её общий вид и предотвращая вялость, уменьшает выпадение волос, ускоряет их рост, укрепляет ногти. Поскольку кремний участвует в формировании костной ткани, обеспечивая эластичность кровеносных сосудов, участвующих в поглощении кальция из рациона и роста волос и ногтей, его дефицит в организме человека может вызвать костные аномалии, общее замедление роста, бесплодие, отсутствие развития и остеопороз. Диоксид кремния в нормальных условиях всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — силикоз. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках. Нормы предельно допустимых концентраций по кремнию привязаны к содержанию пыли диоксида кремния в воздухе. Это связано с особенностями химии кремния:

  • Чистый кремний, равно как карбид кремния, в контакте с водой или кислородом воздуха образует на поверхности непроницаемую плёнку диоксида кремния ( SiO2), которая пассивирует поверхность;
  • Многие кремнийорганические соединения в контакте с кислородом воздуха и водяными парами окисляются или гидролизуются с образованием в конечном итоге диоксида кремния;
  • Монооксид кремния ( SiO) на воздухе способен (иногда со взрывом) доокисляться до высокодисперсного диоксида кремния.

Применение материала

Основной областью применения карбида кремния является электроника и энергетика. Это вещество используется при производстве полупроводниковых механизмов, светодиодов, резисторов, транзисторов и счетчиков энергии. Эти приспособления обладают высокой прочностью и могут стабильно функционировать в течение 10 лет. Они применяются в высокочастотной электронике. Изделия из карбида кремния отличаются следующими свойствами:

  1. Обладают большой шириной запрещенной зоны;
  2. Могут функционировать при высоких температурах (до 600 °C);
  3. Располагают повышенной теплопроводностью, в отличие от приборов, выполненных из арсенида галлия и иных минералов.
  4. Устойчивы к радиации и воздействию электрических зарядов.

Благодаря высокой огнеупорности и теплостойкости материала, он активно применяется в металлургии и химической промышленности. Из твердого раствора карборунда изготавливается множество нагревательных приборов, способны работать при высоких температурах (до 2000 °C). Эти приспособления могут функционировать в нейтральных или восстановленных средах. Нагревательные элементы активно используются при термообработке металлических деталей для керамических приборов и электронных компонентах.

Карбид кремния применяется в качестве абразива, что обусловлено высокой прочностью и низкой стоимостью химического соединения. При абразивной обработке этот материал используется в следующих процессах:

  • шлифование;
  • ламинирование бумажных изделий;
  • пескоструйная обработка;
  • хонингование;
  • водоструйная резка.

Карборунд нашел широкое применение в производстве конструкционных материалов. Он обладает стойкостью к физическим нагрузкам и активно используется при изготовлении пуленепробиваемых жилетов и дисковых тормозов, устанавливаемых на транспортном средстве. С 1990-х гг. из карборунда изготавливают прочные газовые турбины. Они устойчивы к высоким температурам и ударным нагрузкам.

Получение карбида кремния

Наибольшее количество природного происхождения карбида кремния содержится в космическом пространстве: на пылевых облаках, окружающих звезды, в метеоритах. На Земле этот материал присутствует только на месторождениях кимберлита или корунда, что усложняет процесс его добычи в промышленных масштабах. По этой причине карборунд, используемый в современной индустриальных сферах и бытовых условиях, является искусственным.

Самым распространенным способом получения этого химического соединения является нагревание двуокиси кремния углеродом в специализированных печах, работающих на электричестве. Вещество нагревается до температуры 1800-2300 °C.Источниками кремния являются кварцевый песок, очищенный от примесей, и антрацит. Для улучшения газопроницаемости материала используются опилки из древесины. Цвет синтетического карборунда изменяется при помощи добавления хлорида натрия (поваренной соли). Увеличение плотности материала производится при помощи прессования. После этих процессов структурные частицы меняют свое местоположения, что приводит к деформации твердого раствора.

Также данное вещество получают при помощи следующих методов:

  1. Сублимация. Это технология предоставляет выращивать зерна карбида кремния природных материалов. Рост кристаллов осуществляется в графитовых тиглях из газовой фазы. Получить карборунд при помощи этой технологии можно из инертных газов, нагретых до температуры 2600 °C.
  2. Эпитаксия. Этот способ используется для получения твердых растворов карбида кремния. В нем используется водород, предварительно очищенный от примесей при помощи диффузионных методов. Химический элемент вступает в реакцию со свободным углеродом, что приводит к образованию полупроводниковых пленок.
  3. Синтез. Сырьем для получения карборунда является графит, измельченный до порошкообразного состояния. Также для получения необходимого материала можно использовать сажу с размером частиц не более 20 мкм. Синтез химических веществ происходит в твердой фазе, что обусловлено большим расстоянием между атомами углерода и кремния.
  4. Приготовление шихты. Для этого метода требуются компоненты, содержащие большое количество углерода и кремния. В качестве сырья могут использоваться нанопорошки, углеводы или многоатомные спирты. Приготовление шихты осуществляется в деионизованной воде в течение 5,5 часов. Материал нагревается ступенчато до температуры 1650 °С.

Для промышленных нужд чаще всего изготавливают карбиды зеленого и черного цветов. Особенности их химического состава определены в ГОСТ 26327-84. В нем указаны 4 марки карбида кремния: 53С, 54С, 63С и 64С.

Производство

Из-за редкости нахождения в природе муассанита карбид кремния, как правило, имеет искусственное происхождение. Простейшим способом производства является спекание кремнезёма с углеродом в графитовой электропечи Ачесона при высокой температуре 1600—2500 °C:

SiO2 + 3C → 1600−2500oC SiC + 2CO

Чистота карбида кремния, образующегося в печи Ачесона, зависит от расстояния до графитового резистора в ТЭНе.

Кристаллы высокой чистоты бесцветного, бледно-жёлтого и зелёного цвета находятся ближе всего к резистору. На большем расстоянии от резистора цвет изменяется на синий или чёрный из-за примесей. Загрязнителями чаще всего являются азот и алюминий, они влияют на электропроводность полученного материала.

Чистый карбид кремния также может быть получен путём термического разложения полимера полиметилсилана (SiCH3)n, в атмосфере инертного газа при низких температурах. Относительно CVD-процесса метод пиролиза более удобен, поскольку из полимера можно сформировать изделие любой формы перед запеканием в керамику.

Муассанит (карборунд)

Последней попыткой создания качественной синтетической имитации бриллианта оказались муассаниты

Говоря о муассаните, очень важно понимать разницу между природным минеральным образованием и его одноименным синтетическим аналогом

Минерал муассанит является природным, назван в честь его первооткрывателя, Анри Муассана (1852-1907), Нобелевского лауреата по химии (1906 год). Природный муассанит не пригоден для огранки в драгоценные камни из-за очень мелкого (максимум 2-3мм) размера зерен, темного непрозрачного света и исключительной редкости. Муассанит представляет из себя карбид кремния SiC, с гексагональной кристаллической структурой ( в отличие от кубической у алмаза)

Муассанит был синтезирован еще до того (1893), как был обнаружен (1905) в природе.

В 1987 году в лаборатории Cree Research (США) был найден способ синтеза бесцветного муассанита. Правда, до 1993 года эти камни не были совсем бесцветными, если выразиться точнее – они были в лучшем случае околобесцветными и соответствовали цвету не выше (у лучших образцов) I-J по шкале GIA для бриллиантов. В 1998 году была запатентована технология синтеза реально бесцветных муассанитов методом сублимации, и с тех пор эти камни имеют зарегистрированное торговое название “Charles & Colvard created Moissanite”

С момента появления на рынке в 1976 году CZ (фианитов в российском варианте) муассанит оказался наилучшим из известным симулянтов бриллианта. Однако натренированный глаз может легко отличить муассанит от “лучшего друга девушки”.

Из-за отличной от алмаза кристаллической структуры муассонит обладает очень сильным двупреломлением, которое в принципе невозможно для алмаза (бриллианта)

Из-за отличной от алмаза кристаллической структуры муассонит обладает очень сильным двупреломлением, которое в принципе невозможно для алмаза (бриллианта). Если посмотреть “сквозь” муассанит по углом к его верхней площадке, то ВСЕГДА будет хорошо заметно раздвоение граней павильона. То есть как бы грани будут выглядеть как на “размытой нерезкой фотографии”.

Надежным идентификатором муассанита является его относительная плотность (3.22 против 3.52 у бриллианта). В метилен иодиде более плотный бриллиант утонет, а менее плотный муассанит будет “плавать”.

“Точечный тест” не поможет из-за очень высокого коэффициента преломления у муассанита – не покажет отличие муассонита от бриллианта, но покажет отличие от природного или синтетического циркона.

Надежным способом гарантированной идентификации муассанитов является их нагрев до температуры свыше 230 градусов. При этой температуре все без исключения муассаниты окрашиваются в зеленовато-желтый или коричневый цвет, который пропадает немедленно после остывания.

Интересное о камне

Распространено несколько интересных фактов о камне:

  • Возле вулкана Везувий (расположен в Италии) туристам в качестве карборунда продают застывшую лаву.
  • Муассанит часто называют «космическим» камнем, т. к. в космосе он присутствует в большем количестве, нежели на Земле.
  • Учёные предполагают, что природный карбид кремния впервые появился за пределами Солнечной системы. К таким выводам они пришли после изучения Мерчисонского метеорита.
  • Впервые минерал был открыт французским учёным Анри Муассаном. Отсюда и его говорящее название.

Сфера применения

Древесный уголь используется в промышленности в следующих целях:

  • для применения в составе фильтров;
  • для плавки кристаллического кремния;
  • для использования в металлургии (насыщение стали углеродом, получение чистых сплавов);
  • для производства стекла, некоторых видов пластмасс, красок;
  • для изготовления натурального красителя для пищевой промышленности;
  • для изготовления активированного угля;
  • для использования в сельском хозяйстве;
  • для применения в качестве удобного бытового топлива для печей, каминов, мангалов.

При сжигании в печах и каминах данный вид топлива сгорает практически без языков пламени, обеспечивая ровный и интенсивный жар. Наиболее высоко ценится продукт марки А, который изготавливается из твердых пород древесины.

Лечебные свойства

Помимо практического применения в разных сферах промышленности, минерал обладает лечебными свойствами. Вот некоторые из них:

  • Избавляет от фобий и затяжной депрессии.
  • Успокаивает нервы и улучшает сон.
  • Нормализует обмен веществ.
  • Улучшает состояние ЖКТ в случае гастрита или язвы.
  • Восстанавливает функции печени, избавляя от гепатита и цирроза начальной стадии.
  • При постоянном ношении устраняет головные и суставные боли.
  • Нормализует гормональный фон.
  • Улучшает кроветворение, и особенно полезен при анемии.
  • Укрепляет иммунитет.

Свойства и описание камня карборунд

Карборунд, или муассанит – это камень, относящийся к классу полупроводникового бинарного химического соединения. Это карбид кремния, получаемый в искусственных условиях в течение 30-40 часов. Камень получают в результате плавления угля и песка. Характерен выраженный блеск, который есть у антрацита. Если камень попадает под прямые лучи солнца, он переливается всеми цветами радуги. Благодаря высокому показателю твердости (9,1 балла по шкале Мооса), карборунд может поцарапать любой минерал, кроме алмаза.

Это тугоплавкий самоцвет, характеризующийся устойчивостью к воздействию кислот и других агрессивных факторов. Не плавится при температуре свыше 1500 градусов по Цельсию. Также есть свойство преломлять свет. Выделают более 250 кристаллических форм карборунда, от которых зависит цветовая гамма. Камень не разрушается при интенсивном и продолжительном трении.

Формула и технология получения карборунда была запатентована Эдвардом Гудричем Ачесоном в 1893 году. Однако в 1842 году аналогичное соединение химических элементов было получено ученым Деспретзом.

Природный аналог встречается крайне редко. По сей день крупные залежи карборунда не удалось найти.

Магические свойства

Карборунд обладает следующими магическими свойствами:

  • Улучшает материальное благосостояние и притягивает деньги своему владельцу.
  • Помогает преодолеть страх на пути к цели, сметая все препятствия на пути.
  • Помогает своему владельцу обрести сексуальную притягательность для противоположного пола.
  • Улучшает память и интеллектуальные способности.
  • Защищает от внешнего негатива (порча, сглаз, проклятие).

Будьте осторожны! Постоянно носить при себе карборунд не рекомендуется, т. к. это чревато нервным возбуждением или бессонницей.

Применение SiC[править]

Карборунд

техническое название карбида кремния используемого в технических целях в качестве абразива. Используется так же для изготовления деталей химической и металлургической аппаратуры, работающих в условиях высоких температур. Цвет карборунда может варьироваться от бесцветного, до зеленого или чёрного.

Карбид кремния является перспективным полупроводниковым материалом. Он представляет собой широкозонный полупроводник (ширина запрещённой зоны Eg=2,2÷3,2 эВ, в зависимости от модификации).

Тип проводимости карбида кремния зависит от примесей. Проводимость n

-типа получается при легировании азотом или фосфором, а проводимость
p
-типа — с помощью алюминия, бора, галлия или бериллия. От типа и количества примеси сильно зависит электропроводность полученного материала.


Использование карбида кремния перспективно в силовой и СВЧ электронике в связи с высокими рабочими температурами, электрической прочностью и хорошей теплопроводностью. Широкая запрещенная зона открывает возможность использования карбида кремния в качестве материала для изготовления высокоэффективных светодиодов, охватывающих весь видимый диапазон спектра. Использование карбида кремния в качестве полупроводникового материала в настоящее время только начинается в связи с трудностью получения его высококачественных монокристаллов.

Карбид кремния используется как компонент композитной брони, применяемой для защиты вооружения и военной техники, а также в виде составного элемента слоистой брони керамика/органопластик в производстве бронежилетов. В бронежилете «Кожа дракона», созданном компанией Pinnacle Armor, используются диски из карбида кремния.

Из карбида кремния делают искусственные драгоценные камни для ювелирных изделий. Как ювелирный камень карбид кремния называется «синтетический муассанит» или просто «муассанит». Муассанит похож на алмаз: он прозрачен и тверд (9—9,5 по шкале Мооса, по сравнению с 10 для алмаза), с показателем преломления 2,65—2,69 (по сравнению с 2,42 для алмаза).

Открытие и начало производства

О ранних, не систематических и часто непризнанных синтезах карбида кремния сообщали Деспретз (1849), Марсден (1880) и Колсон (1882 год). Широкомасштабное производство начал Эдвард Гудрич Ачесон в 1893. Он запатентовал метод получения порошкообразного карбида кремния 28 февраля 1893. Ачесон также разработал электрическую печь, в которой карбид кремния создаётся до сих пор. Он основал компанию The Carborundum Company

для производства порошкообразного вещества, которое первоначально использовалось в качестве абразива.

Исторически первым способом использования карбида кремния было использование в качестве абразива. За этим последовало применение и в электронных устройствах. В начале XX века карбид кремния использовался в качестве детектора в первых радиоприемниках. В 1907 году Генри Джозеф Раунд создал первый светодиод, подавая напряжение на кристаллы SiC и наблюдая за жёлтым, зелёным и оранжевым излучением на катоде. Эти эксперименты были повторены О. В. Лосевым в СССР в 1923 году.

Изотопы и их применение

Основная статья: Изотопы кремния

Кремний состоит из стабильных изотопов 28Si (92,23 %), 29Si (4,67 %) и 30Si (3,10 %). Остальные изотопы являются радиоактивными.

Ядро 29Si (как и протон) имеет ядерный спин I = 1/2 и все шире используется в спектроскопии ЯМР. 31Si, образующийся при действии нейтронов на 30Si, имеет период полураспада равный 2,62 ч. Его можно определить по характеристическому β-излучению, и он очень удобен для количественного определения кремния методом нейтронно-активационного анализа. Радиоактивный нуклид 32Si имеет самый большой период полураспада (~170 лет) и является мягким (низкоэнергетическим) β-излучателем.

Получение

Свободный кремний получается при прокаливании мелкого белого песка (диоксида кремния) с магнием:

SiO2+2Mg → 2MgO+Si{\displaystyle {\mathsf {SiO_{2}+2Mg\ \rightarrow \ 2MgO+Si}}}

При этом образуется аморфный кремний

, имеющий вид бурого порошка.

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2коксом при температуре около 1800 °C в рудотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

Возможна дальнейшая очистка кремния от примесей.

  • Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.
  • Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4, SiHCl3 и SiH2Cl2. Их различными способами очищают от примесей (как правило, перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.
  • Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии, предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Содержание примесей в доочищенном кремнии может быть снижено до 10−8—10−6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний.

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.

В России технический кремний производится «ОК Русал» на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область); доочищенный по хлоридной технологии кремний производит группа «Nitol Solar» на заводе в г. Усолье-Сибирское.

Краткое описание

Оксид кремния (IV) SiO2 представляет собой твёрдое, тугоплавкое кристаллическое вещество, которое не растворяется в воде и не вступает с ней в реакцию. Химический компонент проявляет окислительные свойства. При температуре от +1000°C SiO2 взаимодействует с активными металлами. В этом случае образуется кремний:

  • SiO2 + 2Mg = Si + 2MgO.
  • 3SiO2 + 4Al = 3Si + 2Al2O3.

При избытке кремния происходит восстановление силицидов. Эта химическая реакция имеет следующую формулу: SiO2 + 4Mg = Mg2Si + 2MgO. Силициум взаимодействует с водородом, а при использовании углерода образуется карборунд: SiO2 + 3C = SiC + 2CO.

Если попробовать сплавить оксид кремния со щелочами, то в итоге можно будет получить силикаты:

  • SiO2 + 2NaOH = Na2SiOO3 + H2O.
  • SiO2 + CaO = CaSiO3.
  • SiO2 + K2CO3 = K2SiO3 + CO2.
  • SiO2 + H2O ≠.

При нормальном давлении и температуре воздуха можно выделить три кристаллические модификации SiO2: тридимит, кварц и кристобалит. В каждом случае известны высокотемпературные и низкотемпературные формы. В их основе лежат тетраэдры SiO4, которые соединены четырьмя атомами кислорода в трёхмерной решётке.

Свойства монооксида

На уроках химии можно узнать, что формула оксида кремния выглядит следующим образом — SiO2. Внешне это вещество имеет вязкую консистенцию, больше напоминает смолу. Без какого-либо воздействия оксид кремния отлично сохраняет своё конденсированное состояние, не подвержен окислению. SiO2 не влияет на образование солей, а также не пропускает ток. Получить монооксид кремния можно двумя доступными методами:

  • Нагреть кремний до отметки +400°C и выше при недостаточном объёме кислорода. Формула выглядит следующим образом: 2Si + O2 → 2SiO.
  • Использование специального метода Чохральского (выращивание монокристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава) при восстановлении диоксида в условиях высоких температур. Формула: 2SiO2 + Si → 2SiO.

В твёрдом состоянии монооксид представляет собой порошок коричневого цвета. Это химическое вещество обладает высокой прочностью и инертностью при условии взаимодействия с кислотами. Добиться полного растворения монооксида можно только в плавиковой кислоте. Среди основных химических свойств SiO2 можно выделить:

  • Монооксид может разлагаться только под воздействием высоких температур. Отобразить эту реакцию можно с помощью следующей формулы: 2SiO → 2Si + О2.
  • При нагревании монооксид взаимодействует с СО2. Формула: SiO + CO2 → SiO2 + CO.
  • Монооксид кремния вступает в реакцию с парами Н2О, но только при условии нагревания до +500°C. Этот процесс хорошо виден в формуле: SiO + H2O → SiO2 + H2.
  • Жидкий хлорид кремния можно получить в том случае, если дополнительно задействовать хлор и нагреть смесь до +800°C. Наглядно эта реакция выглядит так: 2SiO + 4Cl2 → 2SiCl4 + O2.

Характеристика диоксида

Оксид кремния (SiO2) представляет собой кристаллическое тугоплавкое вещество, которое не растворяется в воде. Этот химический компонент не проводит электрический ток. На уроках химии в 8 классе учащимся объясняют, что диоксид входит в состав следующих горных пород:

  • Песка.
  • Горного хрусталя.
  • Яшмы.
  • Кварца.
  • Агата.
  • Аметиста.

Литосфера на 87% состоит из диоксида. Это химическое вещество имеет немолекулярное строение. Атомы кислорода и кремния связаны ковалентным способом. Благодаря этому сформировалась кристаллическая решётка. Диоксид можно получить в лабораторных условиях. Для этого кремний вместе с кислородом нагревают до отметки +500°C: Si + O2 → SiO2.

После воздействия кислот на растворимые силикаты образуется диоксид. В итоге формируется кремниевая кислота, которая распадается на диоксид и воду. Химическая реакция выглядит следующим образом:

  • Na2 SiO3 + 2CH3COOH → 2CH3COONa + H2SiO3↓.
  • H 2SiO3 → H2O + SiO2.

В нормальных условиях диоксид вступает в реакцию только с плавиковой кислотой. А вот с основными оксидами и щелочами может взаимодействовать только при воздействии высоких температур. Диоксид не реагирует на Н2О. Сегодня это химическое вещество используется для серийного производства силикагеля, стекла и бетона.

Кристаллические решетки

Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.

Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают пространственное расположение атомов.

Молекулярная кристаллическая решетка

В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей. Связи чаще всего ковалентные полярные или неполярные.

Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие температуры кипения.

Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2. Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы подробно изучили в статье, посвященной классификации веществ.

Ионная кристаллическая решетка

В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли, оксиды и гидроксиды металлов.

Металлическая кристаллическая решетка

В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.

Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят электрический ток и тепло, имеют высокие температуры плавления и кипения.

Примеры: Cu, Fe, Zn, Al, Cr, Mn.

Атомная кристаллическая решетка

В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.

Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные, нерастворимы в воде.

Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию

.

Источник

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]