Все в этом мире не вечно. Практически все со временем превращается в прах. И к сожалению этого никто не может изменить. Все же есть в нашем мире вещи, которые, по мнению многих, являются неизменными. Сегодня хочу поговорить об одном таком объекте — алмазе. Алмаз по праву считается одним из самых твердых минералов в мире. И все же…
Известно ли Вам, что алмазы могут гореть? Данный занимательный феномен был обнаружен в результате экспериментов, которые проводились с этим минералом. В результате экспериментов выяснилось, что при высоких температурах (850-1000 градусов C) очень твердый минерал меняет свою структуру и превращается в чистейший углекислый газ, не оставляя никаких других веществ. В первый раз это было доказано в 1694 году, в тот момент, когда ученые из Италии К.А. Тарджони и Дж. Аверани попытались соединить в один большой алмаз несколько алмазов мелкой величины. Температура горения, при которой алмаз горит
в в струе чистого кислорода чуточку меньше: 720-800 градусов С. Притом горит минерал красивым и голубым пламенем.
Опять же интересен, по моему тот факт, что из алмаза возможно произвести обыкновенный графит. Для этого требуется всего лишь только нагреть камень, при отсутствии кислорода до температуры в 2000 градусов С.
Все перечисленные факты были много раз доказаны учеными на практике, а впоследствии научно обоснованы.
Так, что женщины помните, что алмаз горит
, бриллиант на вашем пальце от высокой температуры может превратиться в обычный графит. Помните об этом и будьте внимательны, не горячитесь.
Горение алмазов. Видео.
Интересные страницы нашего сайта:
Ненастье. Интересные факты о дожде
Подземная лодка. Секретные разработки
Ускоритель Богомолова. Возможно ли полностью уничтожить отдельно взятую страну?
Алмаз – это довольно редкий и дорогой камень. Рождается он в глубине земли и выходит на поверхность в виде кимберлитовой трубки. Открыт этот минерал был давно, но только в шестнадцатом веке учеными началось изучение свойств этого драгоценного камня. После многочисленных опытов физиками был дан ответ о строении и свойствах алмаза.
Но изучение этого минерала продолжается до сих пор. В настоящее время нет точного ответа на вопрос — что будет, если расплавить алмаз? Открытие строения структуры и свойств минерала, позволило использовать его не только как ювелирное украшение, но и в различных отраслях промышленности.
Структура и свойства алмаза
По структуре алмаз представляет собой кристаллическую решетку атомов углерода с очень прочной связью, которая определяет его свойства.
- Твердость алмаза. Это самый твердый из всех минералов, известных в настоящее время. Благодаря своей структуре, разрушить или повредить его поверхность другими минералами или предметами, невозможно.
- Отсутствие реакции алмаза на агрессивную химическую среду в виде щелочей и кислот.
- Хрупкость минерала.
Особенность строения кристаллической решетки минерала делает его хрупким. При сильном ударе по камню, он раскалывается на мелкие части. Это его свойство используется ювелирами при огранке алмазов.
Если основные свойства алмаза в большей степени изучены, то какими свойствами будет обладать минерал, если его попробовать расплавить? Экспериментальные опыты на тему: «как расплавить алмаз», физиками проводились и проводятся в настоящее время.
Как расплавить алмаз
Физикам удалось, вследствие эксперимента, получить жидкие капли алмаза, но измерить температуру плавления и зафиксировать новые свойства минерала в этом состоянии, не получилось. При нагревании алмаза обычным способом в воздушном пространстве до температуры в 1000 градусов по Цельсию, он сгорает, а в вакууме, при температуре 2000 градусов, превращается в графит.
Ученые, в процессе эксперимента, решили воздействовать на природный алмаз в одну десятую карата высокой температурой, 3500 градусов по Цельсию и высоким давлением ударной волны (давление достигало 11 млн атмосфер) с помощью лазерных импульсов.
При постепенном понижении температуры и давления, появились образования в виде кусочков льда, не тонущих на поверхности образовавшейся жидкости. Количество этих твердых образований при неизменной температуре и пониженном давлении все больше и больше увеличивалось.
В виду сложности условий эксперимента, изучить свойства расплавленной формы алмаза не удалось. Однако подобные проявления зафиксированы на Нептуне и Уране. Есть вероятность, что в недрах этих планет существуют моря из расплавленных алмазов.
Вторая жизнь в рекламе
Оба металла оказались чрезвычайно устойчивыми к коррозии, даже превосходили по этому показателю золото и платину. А с учетом их твердости казались весьма перспективными для использования в практических целях. Но в XIX веке единственное общеполезное, что могли из них сделать, был маленький нестираемый шарик из иридия на кончике золотого или платинового пера перьевой ручки, которую макали в чернила. Такая ручка стоила золотую гинею, то есть примерно полтора фунта стерлингов по курсу 1830-х годов, когда такие ручки появились в продаже.
В ХХ веке таким шариком из сплавов иридия снабжали перья дорогих авторучек, в том числе знаменитый Parker 51, которым в период с 1930-х по 1980-е годы было подписано, наверное, большинство международных договоров и которым, как известно, пользовался Джеймс Бонд. Правда, у «паркера» шарик на конце пера состоял из сплава иридия с рутением, в котором иридия было всего 3,8%. Так что для снобов, если бы они знали историю химии, по престижности, или «крутизне», как сейчас говорят, самый навороченный современный «паркер» против перьевой ручки позапрошлого века за гинею все равно что японские серийные часы Seiko против хронографа Patek Philippe.
В 1933 году из сплава иридия с рутением сделали термопару для измерения высоких температур вплоть до 2000 градусов по Цельсию. В 1957 году Рудольф Мессбауэр открыл резонансное поглощение гамма-излучения ядрами иридия (эффект Мессбауэра, одно из «эпохальных открытий в физике ХХ века», как его называют). Сейчас область практического использования иридия и осмия намного шире, но все их применения связаны с повышенной температурой плавления, твердостью и коррозийной устойчивостью. Например, в 2006 году компания American Elements разработала технологию отливки бесшовных иридиевых колец для их использования в космических аппаратах и спутниках.
В 2016 году American Elements учредила дочернюю компанию Smithson Tennant, которая по той же технологии начала производить ювелирные украшения из иридия, в первую очередь иридиевые обручальные кольца Smithson Tennant. Продвигая их на рынок, компания делает упор на то, что они вечные в буквальном смысле этого слова: их можно опустить в концентрированную кислоту, и ничего с ними не станет. Довольно странная реклама… Не хочется думать, что будет с безымянным пальцем невесты или жениха, если они его сунут в кислоту, но с кольцом действительно ничего не будет, оно даже не потускнеет. Что же касается торговой марки этих колец, то едва ли член Лондонского королевского общества Теннант мог ожидать, что спустя два века после своей кончины он станет рекламным лицом новомодных иридиевых украшений премиум-класса.
Расплавит ли лава алмаз?
Температура лавы колеблется от 500 до 1200 градусов. Температура плавления алмаза начинается от 3500 градусов (при этом необходимо давление более 11 ГПа). Так что нет, лава алмаз расплавить не способна. Однако она способна его сжечь, т.к. при атмосферном давлении алмаз сгорает при температуре 1000 градусов.
Интересный факт
. В 2013 году в лаве действующих вулканов на Камчатке были обнаружены россыпи алмазов. Как такое возможно, если они должны сгорать. После ряда исследований ученые сделали вывод, что это новообразовавшиеся алмазы с новыми свойствами. Им даже дали отдельное название — толбачинские. Как говорится в сообщении: «алмазы образовались в вулканических газах в результате шоковой кристаллизации под действием грозовых электрических разрядов».
О том, в какое вещество переходит алмаз при плавлении, ученые спорят до сих пор. С XVI века, момента обнаружения минерала, ведется его активное изучение. Но, до сих пор не разгаданы многие тайны. За более чем 500 лет было проведено множество экспериментов в стремлении ученых разгадать эту загадку. Но большинство свойств камня все еще остаются неизученными. Каждое открытие занимает многие годы. В нашей статье, мы приоткроем для вас одну из завес, за которой скрывается много интересного.
Где встречаются алмазы в земной коре?
Эти минералы чрезвычайно редкие. Впрочем, промышленные месторождения сегодня разрабатываются практически на всех континентах земного шара. Исключением является лишь Антарктида.
До средины 19 века считалось, что минералы формируются в речных отложениях. Позже были открыты первые алмазоносные полости в каменистой горной почве на глубине в несколько сотен метров.
Согласно данным ученых, возраст некоторых алмазов составляет от 100 млн до 2,5 млрд лет. Исследователям удалось раздобыть более «старые» минералы неземного происхождения. Последние занесены на планету вместе с метеоритами, которые образовались в космическом пространстве еще до формирования Солнечной системы.
О базовых свойствах
От того, при какой температуре плавится алмаз, зависит возможность его применения и в ювелирной отрасли, и в промышленности. Но характеристика пока не изучена в полном объеме, так как камень имеет уникальные свойства. Его сложно сравнить с чем-либо, из известного миру.
Одно из объяснений столь необычных характеристик минерала – его внеземное происхождение. Есть теория, что алмаз попал на планету из космоса вместе с метеоритами и осел в недрах земли. Другие ученые, объясняют странное поведение камня строением его кристаллической решетки.
Атомы углерода в нем имеют сверхпрочную связь, что обуславливает уже известные свойства алмаза:
- аномальную твердость;
- устойчивость к агрессивной химической среде (щелочи и кислоты);
- хрупкость.
Парадокс алмаза в том, что, с одной стороны, это самый прочный минерал на планете. Но с другой — он очень хрупкий и его легко повредить сильным ударом. Последнее свойство ювелиры используют при огранке.
Двойное открытие
Второе имевшее отдаленные последствия в ювелирном бизнесе открытие Теннанта касалось двух самых твердых и очень редких металлов, содержание которых в земной коре в 10 раз меньше, чем платины, и в 40 раз меньше, чем золота. Открыл их Теннант оба сразу, как говорится, за один присест, растворяя в царской водке (смеси концентрированных азотной и соляной кислот) платину, точнее, платиновую руду из Колумбии.
Платина растворилась, остался только черный осадок примеси в руде. Теннант сплавил этот нерастворимый остаток с щелочью и полученное вещество попробовал для начала растворить в воде. Вода пожелтела, а в осадок выпало еще одно черное твердое вещество. Желтый раствор был раствором тетроксида осмия. Оставалось его выпарить и получить соль какого-то пока неизвестного металла, потом прокалить и получить этот металл в чистом виде. Теннант назвал его осмием (в переводе с древнегреческого — «пахучий»; его соль сильно пахла, точнее, даже воняла как тухлая редька).
Фото: Getty Images
Фото: Getty Images
Потом черный осадок после удаления из него осмия Теннант попробовал растворить в соляной кислоте, а то, что после этого осталось, он сплавил с едким натром и снова попытался растворить в кислоте. На этот раз раствор покраснел, и в нем выпали мелкие кристаллы красного цвета. Это была соль еще какого-то металла. Теннант ее прокалил и получил белый металлический порошок. Новый металл он назвал иридием (по-древнегречески — «радужный»), вероятно, за разные цвета его солей.
Интересные свойства, изученные в ходе экспериментов
Алмаз — самый удивительный камень. Его природа и свойства заставляют самых умных людей планеты решать наисложнейшие задачи. Его красота восхищает миллионы. Это один из лучших диэлектриков и изоляторов. В его состав входят только атомы углерода.
Любопытно, что сам углерод – крайне горючее вещество. В природе, он чаще встречается в форме графита. Это натолкнуло ученых на идею преобразования одного вещества в другое. Их интересовало, будет ли в процессе расплавления алмаз переходить в графит и наоборот. Результаты получились неоднозначными.
Выяснилось, что создать из алмаза графит возможно, нагрев кристалл до 2000 градусов и перекрыв доступ кислорода. А вот провести обратную реакцию, не изготавливая затравку, так и не удалось. Об этом вы можете прочитать в статье Если же камень нагревать не в вакууме, он просто превратится в углерод.
Переход из одного состояния в другое
По температуре и среде в плавильной печи, можно спрогнозировать, в какое состояние перейдет алмаз. Если в колбе присутствует кислород, то камень полностью сгорит при температуре 850-1000 градусов Цельсия. Во время реакции будет выделяться бледно-синее пламя. По окончанию эксперимента, в капсуле останется CO2 – кислород и углерод.
Доказать это удалось еще в 1694 году итальянским ученым, Тарджони и Аверани. Они старались сплавить два небольших бриллианта в один, но только сожгли камни.
Их эксперимент провалился потому, что добиться плавного расплавления алмазов невероятно сложно: необходима капсула без кислорода, с возможностью регулирования давления внутри нее.
То, в какое вещество переходят алмазы, нагретые до 2000-3000 градусов, зависит от окружающей среды. Если перекрыть кислород и создать температуру в 1800-2000 градусов, можно получить графит. Подняв уровень тепла до 3700-4000 градусов в тех же условиях, можно получить расплавленный углерод. Но добиться от лабораторных приборов таких мощностей крайне сложно.
Ход эксперимента и его результаты
Чтобы определить, при какой температуре плавится алмаз, в 2010 году был проведен большой эксперимент. Камень размером в 1/10 карата был помещен в специальную капсулу, где создавались волновые наносекундные импульсы. В печи было достигнуто давление в 10 млн атмосфер и температура 40000 по Кельвину (39726,85 по Цельсию), после чего кристалл перешел в жидкое состояние.
На этом эксперимент не завершился. Ученые продолжили поднимать температуру и давление. Когда жар достиг 50000 Кельвинов (49726,85 Цельсия), алмаз начал затвердевать. Причем, делал это буквально кусками – на поверхности расплавленной массы образовывались твердые кристаллы.
Конструкция напоминала айсберг. Любопытно, что расплавленная масса не кипела и не изменялась, когда ученые продолжили повышать температуру. Но с понижением градусов и при сохранении давления кристаллы становились больше и срастались в один.
Условия плавления алмазов
В 2010 году в ходе опытов физики лаборатории Калифорнийского университета, расположенного в Беркли, определили уровень температурного воздействия на алмаз, который приводит к его плавлению. Ученые установили, что преобразовать материал в жидкую форму в обычных условиях невозможно, независимо от уровня нагревания. Достичь указанной цели можно лишь при воздействии на алмаз не только температурой, но и высочайшим давлением. Повышать давление необходимо, чтобы минерал не превращался в графит. Таким образом, переход алмаза в жидкую форму является крайне затруднительным процессом.
Феномены и научные факты
Не только плавление алмаза интересовало ученых. В ходе одного из экспериментов по превращению камня в углекислый газ, произошло интересное открытие. При воздействии на кристалл мощными ультрафиолетовыми лучами в минерале образовалась полость.
Удалось выяснить, что ультрафиолет вредит алмазу. Но у владельцев украшений с бриллиантом это не должно вызывать беспокойства. Пройдут десятки тысяч лет, прежде чем солнечные лучи смогут навредить вашим драгоценностям.
Многие загадки алмаза ученые так и не смогли разгадать. Например, в ювелирных мастерских камень легко поддается нагреванию, обработке и пайке. Правда, если в бриллианте присутствуют трещины, он разлетится на маленькие осколки.
Лава и углеродные кристаллы
Из-за того, что бриллиантовые месторождения находятся в кимберлитовых трубках – месте выхода вулканической породы на поверхность, возникают закономерные опасения. Может ли лава расплавить алмаз? Ответ однозначный – нет.
Дело в том, что температура плавления алмаза свыше 3500 градусов. Да и давление необходимо не шуточное, более 11 гПа. Жар лавы – всего 500-1200 градусов. Простым сравнением приходим к выводу, что потоки лавы могут лишь сжечь минерал, если достигнут 1000 градусов.
Слово «алмаз» пришло из греческого языка. На русский оно переводится как « ». И действительно, чтобы повредить этот камень, нужно приложить нечеловеческие усилия. Он режет и царапает все известные нам минералы, при этом сам остается невредимым. Ему не вредит кислота. Однажды из любопытства был проведен эксперимент в кузнице: алмаз положили на наковальню и ударили по нему молотом. Железный почти раскололся надвое, а камень остался целым.
Алмаз горит красивым голубоватым цветом.
Из всех твердых тел алмаз обладает самой высокой теплопроводностью. Он устойчив к трению, даже об металл. Это самый упругий минерал, обладающий самым низким коэффициентом сжатия. Интересное свойство алмаза — люминесцировать и под воздействием искусственных лучей. Он светится всеми цветами радугами и интересно преломляет цвет. Этот камень будто напитывается солнечным цветом, а затем излучает его. Как известно, природный алмаз некрасив, истинную красоту ему придает огранка. Драгоценный камень из обработанного алмаза называется бриллиантом.
Восемнадцатый век, Франция, Париж. Антуан Лоран Лавуазье, один из будущих творцов химической науки, после многолетних экспериментов с разными веществами в тиши своей лаборатории вновь и вновь убеждается в том, что совершил подлинную революцию в науке. Его простые по сути химические опыты по сжиганию веществ в герметически закрытых объемах полностью опровергают общепринятую в то время теорию флогистона. Но веские, строго количественные доказательства в пользу новой «кислородной» теории горения в ученом мире не принимаются. Очень уж прочно засела в головах наглядная и удобная флогистонная модель.
Что же делать? Убив два-три года на бесплодные усилия отстоять свою идею, Лавуазье приходит к заключению, что до чисто теоретических аргументов его научное окружение еще не дозрело и следует пойти совершенно иным путем. В 1772 году великий химик решается с этой целью на необычный эксперимент. Он приглашает всех желающих принять участие в зрелище по сжиганию в запаянном котле… увесистого куска алмаза. Как же тут удержаться от любопытства? Ведь речь идет не о чем-нибудь, а об алмазе!
Вполне понятно, что вслед за сенсационным сообщением в лабораторию вместе с обывателями валом повалили и ярые оппоненты ученого, до этого никак не желавшие вникать в его опыты со всякой там серой, фосфором и углем. Помещение было надраено до блеска и сияло не меньше, чем приговоренный к публичному сожжению драгоценный камень. Надо сказать, что лаборатория Лавуазье по тем временам принадлежала к одной из лучших в мире и вполне соответствовала дорогостоящему эксперименту, в котором идейным противникам хозяина теперь просто не терпелось принять участие.
Алмаз не подвел: сгорел без видимого следа, согласно тем же законам, что распространялись и на другие презренные вещества. Ничего существенно нового с научной точки зрения не произошло. Зато «кислородная» теория, механизм образования «связанного воздуха» (углекислого газа) наконец-то дошли до сознания даже самых закоренелых скептиков. Они поняли, что алмаз исчез не бесследно, а под воздействием огня и кислорода претерпел качественные изменения, превратился в нечто иное. Ведь по окончании эксперимента колба весила ровно столько, сколько в начале. Так с ложным исчезновением у всех на глазах алмаза из научного лексикона навсегда исчезло слово «флогистон», обозначающее гипотетическую составную часть вещества, якобы теряемую при его горении.
Но свято место пусто не бывает. Одно ушло, другое пришло. Флогистонную теорию вытеснил новый фундаментальный закон природы — закон сохранения материи. Лавуазье был признан историками науки первооткрывателем этого закона. Убедить в его существовании человечество помог алмаз. В то же время эти же историки напустили вокруг нашумевшего события такие клубы тумана, что разобраться в достоверности фактов до сих пор представляется довольно непростым делом. Приоритет важного открытия вот уже много лет и без всяких к тому оснований оспаривается «патриотическими» кругами самых разных стран: России, Италии, Англии…
Какими же аргументами обосновываются претензии? Самыми нелепыми. В России, например, закон сохранения материи приписывается Михаилу Васильевичу Ломоносову, который в действительности его не открывал. Причем в качестве доказательств борзописцы химической науки беспардонно используют выдержки из его личной переписки, где ученый, делясь с коллегами своими рассуждениями о свойствах материи, якобы собственноручно свидетельствует в пользу этой точки зрения.
Итальянские историографы притязания на приоритет мирового открытия в химической науке объясняют тем, что… Лавуазье не первого осенила догадка использовать в опытах алмаз. Оказывается, еще в 1649 году видные европейские ученые познакомились с письмами, в которых сообщалось о подобных экспериментах. Они были предоставлены Флорентийской Академией наук, и из их содержания следовало, что местные алхимики уже тоща подвергали алмазы и рубины сильному воздействию огня, помещая их в герметически закрытые сосуды. При этом алмазы исчезали, а рубины сохранялись в первозданном виде, из чего делался вывод об алмазе как «поистине волшебном камне, природа которого не поддается объяснению». Ну и что? Все мы так или иначе движемся по стопам предшественников. А то, что алхимиками итальянского Средневековья не была распознана природа алмаза, только лишь наводит на мысль о недоступности их сознанию и многих других вещей, в том числе вопроса о том, куда девается масса вещества при его нагревании в исключающем доступ воздуха сосуде.
Весьма шатко выглядят и авторские амбиции англичан, которые вообще отрицают причастность Лавуазье к сенсационному эксперименту. По их убеждению, в актив великого французского аристократа была несправедливо занесена заслуга, принадлежащая на самом деле их соотечественнику Смитсону Теннанту, который известен человечеству как первооткрыватель двух самых дорогих в мире металлов — осмия и иридия. Именно он, как заявляют англичане, проделывал подобные демонстрационные трюки. В частности, сжигал в золотом сосуде алмаз (до этого графит и древесный уголь). И именно ему принадлежит важное для развития химии умозаключение о том, что все эти вещества имеют одинаковую природу и при сгорании образуют углекислый газ в строгом соответствии с весом сгораемых веществ.
Но как ни тщятся отдельные историки науки хоть в России, хоть в Англии умалить выдающиеся достижения Лавуазье и отвести ему второстепенную роль в уникальных исследованиях, у них все равно ничего не получается. Гениальный француз продолжает оставаться в глазах мировой общественности человеком всеобъемлющего и оригинального ума. Достаточно вспомнить его знаменитый опыт с дистиллированной водой, который раз и навсегда поколебал бытующий в то время среди многих ученых взгляд на способность воды превращаться при нагревании в твердое вещество.
Сложился этот неверный взгляд на основе следующих наблюдений. Когда воду упаривали «досуха», на дне сосуда неизменно обнаруживался твердый остаток, который для простоты называли «землей». Отсюда и ходили разговоры о превращении воды в землю.
В 1770 году Лавуазье подверг расхожее мнение проверке. Для начала он сделал все, чтобы получить как можно более чистую воду. Достичь этого можно было тогда только одним способом — перегонкой. Взяв самую лучшую в природе дождевую воду, ученый перегнал ее восемь раз. Затем наполнил очищенной от примесей водой заранее взвешенную стеклянную емкость, герметично закупорил ее и снова зафиксировал вес. Затем в течение трех месяцев он нагревал этот сосуд на горелке, доведя его содержимое почти до кипения. В итоге на дне емкости действительно оказалась «земля».
Но откуда? Чтобы ответить на этот вопрос, Лавуазье вновь взвесил сухой сосуд, масса которого уменьшилась. Установив, что вес сосуда изменился настолько, насколько появилось в нем «земли», экспериментатор понял, что смущавший коллег твердый остаток просто выщелачивается из стекла, и ни о каких чудодейственных превращениях воды в землю не может быть и речи. Такой вот происходит любопытный химический процесс. И под воздействием высоких температур он протекает намного быстрее.
Оглавление
История опытов
В 17 веке в Англии по Бойль сумел сжечь алмаз, наведя на него солнечный луч через линзу. Однако во Франции опыт с прокаливанием алмазов в плавильном сосуде не дал никаких результатов. Французский ювелир, проводивший эксперимент, обнаружил лишь тонкий слой темного налета на камнях. В конце 17 века итальянские ученые Аверани и Тарджони при попытке сплавить два алмаза воедино смогли установить температуру, при которой горит алмаз — от 720 до 1000оС.
Алмаз не плавится из-за прочной структуры кристаллической решетки. Все попытки расплавить минерал заканчивались тем, что он сгорал.
Великий французский физик Антуан Лавуазье пошел дальше, решив поместить алмазы в герметичный сосуд из стекла и наполнив его кислородом. С помощью крупной линзы он нагрел камни, и они полностью сгорели. Исследовав состав воздушной среды, они выяснил, что помимо кислорода в ней присутствует диоксид углерода, представляющий собой соединение кислорода и углерода. Таким образом, был получен ответ: алмазы горят, но только при доступе кислорода, т.е. на открытом воздухе. Сгорая, алмаз превращается в углекислый газ. Вот почему в отличие от угля после сгорания алмаза не остается даже золы. Опыты ученых подтвердили еще одно свойство алмаза: при отсутствии кислорода алмаз не горит, но меняется его молекулярная структура. При температуре равной 2000оС всего в течение 15-30 минут можно получить графит.
Алмаз — драгоценный камень, но его свойства физики оценили по достоинству только в XVI веке. И это несмотря на то что камень был найден несколькими столетиями раньше. Конечно, чтоб оценить всю значимость минерала, потребовалось провести немало опытов. Они дали информацию о том, какая твердость у камня, температура плавления алмаза, а также другие физические характеристики. Но с тех пор камень используют не только в качестве красивого аксессуара, но еще и в промышленных целях.
Оценка проводилась в специальных лабораториях. И в результате был выяснен химический состав алмаза, строение его кристаллической решетки, а также открыто несколько феноменов.
Плавление алмаза
Алмазная сгущенка
Вопрос о природе горючести веществ был одним из главных в химии XVIII века, так как на него замыкались и энергетика, и металлургия. Самым простым объяснением того, чем принципиально отличаются горючие вещества от негорючих, могла быть некая огненная субстанция, которая пронизывает все горючие вещества и высвобождается при горении вместе большим количеством тепловой энергии. Назвали эту субстанцию, как теперь знает каждый школьник, флогистоном.
Теория флогистона была простая, стройная и многое объясняла. Например, почему в опытах Ньютона рефракция (преломление света) сравнительно мало меняется у неорганических (негорючих) веществ в зависимости от их плотности и резко повышается при переходе к «маслянистым» органическим веществам, причем коэффициент преломления у последних весьма сильно коррелирует с их плотностью. С позиции науки того времени преломлял лучи света флогистон.
Загвоздка была только в алмазе: судя по рефракции, он должен был гореть ярче и жарче, чем камфора, скипидарное масло, оливковое масло, не говоря уже о янтаре. Ньютон был не тем ученым, который теряется, когда результаты эксперимента противоречат его теории. Раз у алмаза большая рефракция, то он «вероятно, также есть маслянистое сгустившееся вещество», написал Ньютон в своей «Оптике». И ведь оказался прав на все сто! Поджечь алмаз было трудно, требовались высокие температуры, но алмаз тоже горел и сгорал дотла.
Сейчас трудно сказать, сколько карат алмазов и бриллиантов превратили в дым химики в течение XVIII века, но точно много.
Отказа от состоятельных владельцев расходных материалов для таких опытов, как правило, не было. Слишком заманчивой выглядела перспектива таких исследований: обратный процесс — сгущение бриллиантового флогистона и его кристаллизация — сулил баснословные прибыли.
Теория флогистона, как известно, не оправдалась: слишком много накопилось данных в пользу прямо противоположной теории окисления горючих веществ кислородом воздуха с образованием углекислого газа. Но даже самые светлые умы среди химиков еще долго продолжали сопротивляться очевидным фактам, и понять их можно. Только представьте, что сулило производство чистого флогистона — идеального горючего без цвета, запаха и даже с отрицательной массой, сгорающего вообще без следа, словно его и не было. Стоило только выделить флогистон в чистом виде, и не дымили бы трубы предприятий, никаких труб не было бы вообще. Ведь ядовитый дым, копоть и зола были в рамках этой теории остатками природной тары флогистона. Но ничего этого наука не позволила не только реализовать, но даже помечтать об этом. Окончательный смертный приговор флогистону подписали опыты Лавуазье в 1770–1780-х годах. За одно это его следовало бы отправить на гильотину.
Опыты, связанные с температурой плавления
Как известно, кристаллическая решетка вещества имеет форму тетраэдра с ковалентными связями между атомами углерода. Возможно, что именно такая структура стала причиной нескольких открытий, связанных с плавлением алмаза.
Энциклопедии минералов дают показатели плавления алмазов 3700-4000 градусов по Цельсию. Но это не совсем точная информация, поскольку они не поддаются общепринятым закономерностям. В частности, во время плавления были обнаружены такие эффекты:
- Используя высокие температуры (2000 градусов Цельсия без доступа кислорода), алмаз можно превратить в графит. При этом дальнейшее поведение этого вещества с повышением температуры не поддается логическому объяснению. А вот процесс в обратную сторону произвести невозможно. В крайнем случае можно получить синтетический камень, кристаллическая решетка которого будет отличаться от природных алмазов.
- Если же нагревать камень до температуры 850-1000 градусов по Цельсию, он превращается в углекислый газ, то есть исчезает без следа. Такой опыт провели в 1694 году исследователи из Италии Тарджони и Аверани, пытаясь расплавить камни и соединить их в один алмаз.
- Исследования проводились и в 2010 году в Калифорнии, где группа физиков сделала вывод, что добиться плавления алмаза невозможно, если постепенно повышать температуру камня. Чтоб выяснить показатель плавления, необходимо, кроме температуры, воздействовать на алмаз давлением, а это затрудняет измерение. Чтоб действительно перевести алмаз в жидкое состояние, ученым потребовалось приложить немало усилий. Для этого они использовали импульсы лазера, которые действовали на камень несколько наносекунд. При этом камень в жидком виде был получен при давлении, в 40 миллионов раз превосходящем атмосферное на уровне моря. Кроме того, если давление понижалось до 11 миллионов атмосфер, а температура при этом на поверхности минерала была 50 тысяч Кельвинов, то на камне появлялись твердые кусочки. Они не тонули в остальной жидкости и внешне напоминали кусочки льда. При дальнейшем понижении показателя давления, кусочки скапливались, образовывая «айсберги» на плаву. Ученые сопоставили, что так ведет себя углерод в составе планет Нептуна и Урана, на поверхности этих небесных тел тоже существуют океаны с жидким алмазом. Но чтоб доказать это предположение, необходимо отправить спутники к планетам, что на сегодняшний момент невозможно быстро осуществить.
- Если действовать на камень короткими световыми импульсами в ультрафиолетовом диапазоне, то в минерале появятся небольшие углубления. Таким образом эксперимент подтверждает исчезновение камня под действием мощного ультрафиолета, то есть превращения алмаза в углекислый газ. Поэтому ультрафиолетовые лазеры на основе алмаза быстро ломаются и становятся непригодными к использованию. Но не следует переживать по поводу того, что бриллиант на украшении исчезнет со временем: чтоб удалить один микрограмм минерала, придется держать алмаз под ультрафиолетом около 10 миллиардов лет.
Итак, показатель плавления — интересная характеристика алмаза. Она все еще является предметом для изучения. С появлением технологий ученые находят новые способы проверки этой характеристики. На ее основе можно сделать выводы по поводу происхождения камня, открыть новые способы применения алмаза.
Существуют ли алмазы в расплавленном виде в естественных условиях?
Температура плавления алмаза настолько высока, что на Земле минерал больше не может существовать в кипящем виде. Однако как обстоят дела с космическими объектами? Согласно мнению ученых, температура плавления алмаза по сей день поддерживается в недрах таких планет, как Нептун и Уран. Примечательно, что последние на 10 % сформированы из углерода, который является структурной основой этого минерала.
Как утверждают многие ученые, на вышеуказанных планетах имеются целые океаны алмазов в жидкой, кипящей форме. Такая гипотеза объясняет, почему магнитное поле этих небесных тел ведет себя настолько странно. Ведь Нептун и Уран являются единственными планетами в Солнечной системе, у которых географические полюса не имеют четкого положения и буквально разнесены в пространстве. Для подтверждения интересной гипотезы остается лишь смоделировать аналогичные условия на Земле экспериментальным путем. Однако такое решение на данный момент остается чрезвычайно дорогим и трудоемким. Поэтому пока нет возможности определить наверняка, действительно ли на близлежащих планетах имеются целые океаны алмазов в расплавленном виде.